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Preface

This book contains the extended abstracts of the invited talks, contributed talks, and con-
tributed posters accepted for presentation at the Discrete Mathematics Days 2024. This inter-
national conference was held in Alcala de Henares, Spain, on July 3-5, 2024, focusing on current
topics in Discrete Mathematics and being a satellite event of the 9th European Congress of
Mathematics.

Organized every two years, this conference inherited in 2016 the long tradition of the
Jornadas de Matemdtica Discreta, organized biennially in Spain since 1998. It combines a
strong scientific program with a friendly atmosphere, gathering audience from reputed senior
researchers to master and doctoral students. This book includes 52 contributions together with
the abstracts of the five invited talks, which include the first edition of the Ramon Llull Prize
talk.

As for each and all of them, this edition has been the result of the efforts of a number of
people. First, the members of the organizing committee, who put their best for the success of
this event:

e Guillermo Esteban (co-chair), Universidad de Alcala.

e Andrea de las Heras, Universitat Politecnica de Catalunya.
e David Orden (co-chair), Universidad de Alcald.

e Marino Tejedor-Romero, Universidad de Alcala.

e Lluis Vena, Universitat Politecnica de Catalunya.

We also want to thank the members of the scientific committee, for contributing their
expertise in a careful and constructive way:

e Aida Abiad, Eindhoven University of Technology.
e Marie Albenque, Université Paris Cité.

e Sergio Cabello, Univerza v Ljubljani.

e Pablo Candela, Universidad Auténoma de Madrid.
e Vida Dujmovié¢, University of Ottawa.

e Alberto Espuny Diaz, Universitat Heidelberg.

e Stefan Felsner, Technische Universitat Berlin.

e Delia Garijo (co-chair), Universidad de Sevilla.

e Gyula Kérolyi, E6tvos University and Renyi Institute Budapest.
e Dan Kral’, Masaryk University Brno.

e Marc Noy, Universitat Politecnica de Catalunya.

e Diego Ruano, Universidad de Valladolid.

e Francisco Santos (co-chair), Universidad de Cantabria.
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e Pascal Schweitzer, Technische Universitdt Darmstadt.
e Maria Serna, Universitat Politecnica de Catalunya.

e Maya Stein, Universidad de Chile.

e Julia Wolf, University of Cambridge.

e Oznur Yasgar, Kadir Has University.
Finally, we are grateful to the institutions that supported this edition:

e Universidad de Alcald and its Departamento de Fisica y Matemdticas.
e Universitat Politécnica de Catalunya and its Departament de Matematiques.

e Discrete and Algorithmic Mathematics Network, project RED2022-134947-T funded by
MCIN/ AEI /10.13039/501100011033.

July 2024, Delia Garijo,
Alcald de Henares. David Orden,
Francisco Santos.
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Graph universality

Julia Bottcher*!

!Department of Mathematics, London School of Economics and Political Sciences, Houghton Street,
London WC2A 2AE, UK

Abstract

Given a class G of n-vertex graphs, how can we construct a host graph H that contains them
all as subgraphs? Graphs H with this property are called universal for G, and the question gets
interesting when we put certain restrictions on H. For example, we might be interested in a graph H
with as few edges as possible, or a graph H which has only n vertices itself and still only few edges.
Or we might ask when certain random graphs are universal for G. This all leads to a variety of
interesting and challenging problems. In the talk, I will explain what is known and what is open
for some classes of graphs G. I will also detail some techniques that I recently used with my co-
authors Peter Allen and Anita Liebenau for progress when G consists of all D-degenerate graphs for
a fixed D.

*Email: j.boettcher@lse.ac.uk
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Coboundary expansion, codes, and agreement tests

Irit Dinur*!

Dept. of Computer Science and mathematics, Weizmann Institute of Science, Rehovot, Israel

Abstract

High dimensional expansion is a generalization of expansion in graphs to hypergraphs, simplicial
complexes, and more general poset structures. Two main notions are studied: the first is a spec-
tral notion that is related to random walks and mixing, and the second is a cohomological notion
called coboundary expansion. Coboundary expansion was introduced by Linial and Meshulam, and
by Gromov that combines combinatorics, topology, and linear algebra. Kaufman and Lubotzky
observed its relation to ”Property testing”, and in recent years it has found several applications
in theoretical computer science, including for error correcting codes (both classical and quantum),
for PCP agreement tests, and even for studying polarization in social networks. In the talk I will
introduce this notion and some of its applications. No prior knowledge is assumed, of course.

*Email: irit.dinur@weizmann.ac.il
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Counting polytopes

Arnau Padrol*!

1Universitat de Barcelona and Centre de Recerca Matematica

Abstract

This talk will be an overview of the classical problem of estimating the number of combinatorial
types of d-dimensional convex polytopes with n vertices, and its interactions with some of the
milestones of combinatorial polytope theory. While in dimensions up to 3 we have a very good
understanding on the asymptotic growth of the number of polytopes with respect to the number of
vertices, in higher dimensions we only have coarse estimates. Upper bounds arise from results of
Milnor and Thom from real algebraic geometry, whereas lower bounds are obtained with explicit
constructions. I will present a recent construction giving the current best lower bounds for the
number of polytopes, found in collaboration with Eva Philippe and Francisco Santos.

“Email: arnau.padrol@ub.edu. Research of A. P. supported by grants PID2022-137283NB-C21 of
MCIN/AEIL/10.13039/501100011033, CLaPPo (21.S103.64658) of Universidad de Cantabria and Banco Santander, PAG-
CAP ANR-21-CE48-0020 of the French National Research Agency ANR, and SGR GiT-UB (2021 SGR 00697) from the
Departament de Recerca i Universitats de la Generalitat de Catalunya.
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Recent work on the Erdos-Hajnal Conjecture

Alex Scott*!

'Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

A typical graph contains cliques and independent sets of no more than logarithmic size. The Erdés-
Hajnal Conjecture asserts that if we forbid some induced subgraph H then we can do much better: the
conjecture claims that there is some ¢ = ¢(H) > 0 such that every H-free graph G contains a clique
or independent set of size at least |G|¢. The conjecture looks far out of reach, and is only known for a
small family of graphs. We will discuss some recent progress.

Joint work with Tung Nguyen and Paul Seymour.

*Email: scott@maths.ox.ac.uk. Research supported by EPSRC grant EP/X013642/1.
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Hamilton cycles in random graphs

Alberto Espuny Diaz*!

nstitut fiir Informatik, Universitit Heidelberg, 69120 Heidelberg, Germany.

Abstract

Hamiltonicity (that is, the property of containing a cycle which covers all vertices of a graph) is
among the simplest and most well-studied properties of graphs. It is well known that the associated
decision problem is NP-complete, so we do not expect to find a nice characterisation of Hamiltonian
graphs, which is why so much effort has been devoted to understanding conditions which are sufficient
for Hamiltonicity. In parallel to this, however, a great deal of research has gone into understanding
the “average case” behaviour, by considering probability distributions on different sets of graphs.

The most classical model of random graphs is the model of binomial random graphs, where edges
appear independently with probability p. The Hamiltonicity of graphs in this model (and its closely
related uniform model) has been well understood for decades. Other models of interest include
random regular graphs or different models of random geometric graphs (though many other models
have been studied as well).

More recently, a host of problems inspired by extremal graph theory have been considered in
random graphs. They can broadly be classified into different subcategories. In one direction, given
a graph G which is not Hamiltonian, one wishes to understand the “average case” behaviour of
the supergraphs of G — this has led to the study of so-called randomly perturbed graphs. In the
opposite direction, given a graph G which is Hamiltonian, we wish to understand the “average
case” behaviour of its subgraphs — this relates to the robustness of Hamiltonicity in G. As a third
direction, one may consider extremal questions on random graphs: does every subgraph of a random
graph with some constraint (say, number of edges, or minimum degree) contain a Hamilton cycle?
This direction has been dubbed the study of the resilience of Hamiltonicity. Other natural directions
include counting, packings or coverings.

In this talk, we will survey some results about Hamiltonicity in each of these models and in each
of the three main directions mentioned above, and discuss how they compare to one another.

*Email: espuny-diazQinformatik.uni-heidelberg.de



AWARD MINUTES

The committee is happy to recommend that the first Ramon Llull Prize
in Discrete Mathematics be awarded to Alberto Espuny Diaz for his PhD

dissertation "Hamiltonicity problems in random graphs".

The thesis contains several excellent results, most notably the
solution of a 40-year old conjecture of Bollobas regarding the
threshold for the existence of a Hamilton cycle in the percolated

hypercube, a truly outstanding achievement.

Committee:
Frédéric Havet (Université Cote d’Azur, CNRS, Inria)
Peter Keevash (Oxford)

Gabor Lugosi (ICREA-Universitat Pompeu Fabra, chair)
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Switching methods for the construction of cospectral graphs*

Aida Abiad'!, Nils van de Bergt!, and Robin Simoens$?

Dept. of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands
2Dept. of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium;
Dept. of Mathematics, Universitat Politecnica de Catalunya, Spain

1 Introduction

An important problem in algebraic graph theory is to decide whether a graph is determined by the
spectrum of its adjacency matrix (see the surveys [10, 11]). In 2003, van Dam and Haemers [10]
conjectured that almost all graphs are uniquely determined by their spectrum. While the conjecture is
still open, Brouwer and Spence [8] provided computational evidence by enumerating all graphs with up
to 12 vertices and observing a decline in the fraction of cospectral mates (non-isomorphic graphs with
the same spectrum) between 10 and 12 vertices. Recent work by Koval and Kwan [17] showed that an
exponential number of graphs is determined by its spectrum. On the other side, Haemers and Spence
[14] established an asymptotic lower bound for the number of cospectral mates. Their key ingredient
is the notion of switching.

A switching method is an operation on a graph that results in a graph with the same spectrum.
For such a method to work, the graph needs a special structure, called a switching set. This set of
vertices makes it possible to swap some of the edges while preserving the spectrum of the adjacency
matrix. While Godsil-McKay (GM) switching [13] is the oldest and most fruitful switching method in
the literature (see e.g. [2, 3, 4]), new switching methods have recently been presented in the literature,
most notably Wang-Qiu-Hu (WQH) switching [20] and Abiad-Haemers (AH) switching [4]. The latter
captures all level 2 switching methods, and is motivated by the results of Wang and Xu [21], who
suggested that almost all R-cospectral graphs (cospectral graphs with cospectral complements) can be
constructed using regular orthogonal matrices of level 2.

This work bridges a gap in the existing literature concerning the recently introduced switching
methods of level 2. In particular, we present a combinatorial description of AH-switching that is
more accessible than the algebraic description provided by Abiad and Haemers in [5]. We do this for
switching sets of sizes 6, 8 and 10. Moreover, we show that the asymptotic lower bound on cospectral
mates derived by Haemers and Spence [14] is tight for GM-switching. We also obtain analogous upper
and lower bounds on the number of cospectral mates obtained via WQH-switching.

2 Preliminaries

In this work, graphs are considered to be simple and loopless. The (adjacency) spectrum of a graph
is the multiset of eigenvalues of its adjacency matrix. Graphs are cospectral if they have the same
spectrum. Two graphs are said to be cospectral mates if they are cospectral and non-isomorphic. Let I

*The full version of this work will be published elsewhere.

TEmail: a.abiad.monge@tue.nl. Supported by the Dutch Research Council (NWO) through the grant VI.Vidi.213.085.
fEmail: n.p.v.d.berg@tue.nl. Supported by the Dutch Research Council (NWO) through the grant VI.Vidi.213.085.
$Email: Robin.Simoens@UGent.be. Supported by Research Foundation Flanders (FWO) through the grant 11PG724N.
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denote the identity matrix and J the all-one matrix. Two graphs with adjacency matrices A and A’ are
called R-cospectral if A+rJ and A’+rJ are cospectral for every r € R. An orthogonal matrix is reqular
if it has a constant row sum. Johnson and Newman [16] showed that two graphs are R-cospectral if
and only if their adjacency matrices are conjugated with a regular orthogonal matrix.

The level of a matrix is the smallest positive integer ¢ such that ¢ times the matrix is an integral
matrix, or oo if it has irrational entries. A matrix is decomposable if it can be written as a non-
trivial block-diagonal matrix after a certain permutation of the rows and columns. Otherwise, it is
indecomposable.

3 Switching methods to construct cospectral graphs

The construction of cospectral graphs has multiple purposes: to disprove the conjecture stating that
almost all graphs can be characterized by their spectrum for certain graph classes (see e.g. [3, 12]),
to show which properties of a graph cannot be deduced from the spectrum (see e.g. [1, 7, 18]), or
to construct new strongly regular and distance-regular graphs (see e.g. [6, 19]), among others. In
what follows, we provide an overview of the existing switching methods, and present some new results
concerning AH-switching.

3.1 Godsil-McKay switching

The following method for finding cospectral graphs was introduced by Godsil and McKay [13] in 1982.

Theorem 1 (GM-switching [13]). Let I be a graph and let {C1,...,Cy, D} be a partition of its vertices
such that, for all i,j € {1,...,t}:

(i) Every vertex in C; has the same number of neighbours in C;.
(ii) Every vertex in D has 0, 1|C;| or |Ci| neighbours in C;.

For alli € {1,...,t} and every v € D that has exactly %|CZ| neighbours in C;, swap the adjacencies
between v and C;. The resulting graph is R-cospectral with T'.

The GM-switching operation corresponds to a conjugation of the adjacency matrix with the orthog-
onal matrix diag(Ry, ..., R, I), where R; equals the |C;| x |C;| matrix %AJ — I. Note that any C; of
order 2 only gives a permutation matrix and is therefore trivial. The simplest nontrivial case has one
switching block of size four. This case has actually been the most fruitful in the literature, see e.g.
[2, 3, 4]. Larger switching sets give more conditions on the graph, which intuitively explains the relative
effectiveness of small switching sets. In Section 4, we give an asymptotic formula for the number of
graphs with a switching set of size four. Note that the level of the corresponding matrix is 2 in that
case, and the lowest common multiple of %\CZ-\, 1 <4 <t, in general.

3.2 Wang-Qui-Hu switching

In 2019, Wang, Qiu and Hu [20] presented another switching method, which corresponds to a conju-
gation of the adjacency matrix with the orthogonal matrix diag(R, ..., Ry, I), where each R; is of the

form ) )
R; = ! _Q@J W;] :
@J I — @J

As illustrated in [3, 12, 15], WQH-switching is also a powerful tool for constructing cospectral graphs
in cases where GM-switching fails. In combinatorial terms, the method can be described as follows.

Theorem 2 (WQH-switching [20]). Let T be a graph and let {C}l), C’F), ce Ct(l), C’t(2), D} be a partition
of its vertices such that, for alli,j € {1,...,t}:
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(i) IV =1c?).

IN(w) N O~ IN(w) N CP| ifve

(2)
IN(v) N 0(2)| IN(v) 2?(1)} foe o® is the same for every v € Cl.(l) U CZ@).
v = v j if v i

(i) The number {

(iii) Every vertex in D has either:

(a) |Ci(1)| neighbours in C’i(l) and 0 neighbours in C’Z-(Q),

(b) 0 neighbours in Ci(l) and ]Cl@)| neighbours in Ci(g),
(2)

(c) the same number of neighbours in C’Z-(l) as in C

For alli € {1,...,t} and every v € D for which (a) or (b) holds, swap the adjacencies between v and
Ci(l) U C’Z-(Z). The resulting graph is R-cospectral with T'.

Ift=1and |C’{1)| = |C§2)| = 2, then WQH-switching is equivalent to GM-switching on Cfl) U Cf).
But in general, they are different operations. Note that the level of the corresponding matrix is equal
to the lowest common multiple of %]Cﬂ, 1 <1 <t, just like for GM-switching.

3.3 Abiad-Haemers switching

In 2012, Abiad and Haemers [5] considered switching methods that correspond to a conjugation of
the adjacency matrix with a regular orthogonal matrix of level 2. In particular, these methods can be
used to construct R-cospectral graphs (see the characterization of R-cospectral graphs by Johnson and
Newman [16]). Their starting point is the following classification of indecomposable regular orthogonal
matrices of level 2, which follows from the classification of weighing matrices of weight 4 by Chan,
Rodger and Seberry [9] and has been restated by Wang and Xu [21] in the form below. Note that any
regular orthogonal matrix has row sum 1 or —1, but without loss of generality, we may assume the row
sum to be 1.

Theorem 3 ([9]). Up to a permutation of the rows and columns, an indecomposable regular orthogonal
matriz of level 2 and row sum 1 is one of the following:

J O v ... 0OY
-1 1 1 1 Yy J O --- ... [0)
1 -1 1 1 oy J O ---0
1 1
(Z) 2 1 1 71 1 9 (“) 2 9
11 1 -1 O - oY J O
O O Y J|
(-1 1 1 0 1 0 0]
0-1 1 1 0 1 O 7 I I I
0o 0-1 1 1 0 1 I -7 I 7
(i) 5] 1 0 0 -1 1 1 0/, ()i :
2 2 1 7Z —-Z I
0o 1 0 0-1 1 1 I I 7 -7
1 0 1 0 0 -1 1
r 1 0 1 0 0 —1]

where I, J, O, Y =21 —J and Z = J — I, are square matrices of order 2.

The matrix in Theorem 3(i) corresponds to GM-switching. The one in Theorem 3(ii) is an infinite
family of matrices of even order, starting from order 6. In the following, we focus on this infinite family.
The remaining matrices in Theorem 3(iii)-(iv) were studied by Abiad and Haemers in [5, Section 5 and
Section 6.

It was already noticed by Abiad and Haemers [5] that sometimes, the six vertex AH-switching can
be obtained by GM-switching twice. We make this notion concrete in the following new definition.
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Definition 4. Let Q) be a regular orthogonal matrix of level 2 and let A be an adjacency matriz with
the property that QT AQ is again an adjacency matriz. Then A is called reducible with respect to Q
if there exist reqular orthogonal matrices Q1 and Qo of level 2 whose largest indecomposable block is
smaller than that of @Q, such that Q = Q1Q2 and QlTBQl is also an adjacency matrix. Otherwise, it is
called irreducible.

In what follows, we describe only the irreducible adjacency matrices for the AH-switching set, since
the reducible ones can be obtained by repeated GM- and AH-switching on smaller sets.

3.3.1 Six vertex switching

We present a combinatorial description of the switching on 6 vertices that was established by Abiad
and Haemers [5, Section 4]. Recall that this switching corresponds to a conjugation of the adjacency
matrix with the matrix in Theorem 3(ii) of order 6.

Theorem 5 (AHG6-switching). Let I' be a graph and let {C1,Cy,Cs, D} be a partition of its vertices
such that:

(1) |C1| = [C2] = |Cs] = 2.

(ii) Every vertex in D has the same number of neighbours in Cy, Co and Cs modulo 2.

[ ) [ )
(i1i) The induced subgraph on Cy; U Cy U Cy is E é (in that order, from left to right).

Let w be the permutation on CyUCyUCSs that shifts the vertices cyclically to the right. For every v € D
that has exactly one neighbour w in each C;, replace each edge {v,w} by {v, 7(w)}. Replace the induced

subgraph on C1 U Cy U C5 by . The resulting graph is R-cospectral with T".

Among the seven possible adjacency matrices for an AH-switching set of size 6, obtained by Abiad
and Haemers in [5, Lemma 6], only two are irreducible. However, they are actually equivalent, and
correspond to the induced subgraph in the statement of Theorem 5. In other words:

Theorem 6. AH6-switching is the only switching that corresponds to a reqular orthogonal matriz of
level 2 with one indecomposable block of size 6 and that cannot be obtained by repeated GM-switching.
3.3.2 Eight vertex switching

Surprisingly, all matrices that describe an AH-switching set of order 8 (corresponding to the matrix of
order 8 in the infinite family of Theorem 3(ii)) are reducible:

JOOY
G . . . . 1Y JOO

Theorem 7. Every switching that corresponds to a conjugation with the matriz 3 oy Jo|cmn be
oOo0Y J

obtained by repeated GM- and AH6-switching.

3.3.3 Ten vertex switching

In contrast with the eight vertex case, there are 3 - 2!9 = 3072 possibilities for an (irreducible) AH-
switching set of size 10.

Theorem 8 (AH10-switching). Let I' be a graph and let {C1,Cy,Cs,Cy,C5, D} be a partition of its
vertices such that:

10
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(1) [C1] = |Ca| = |Cs| = [Ca] = |C5] = 2.
(ii) Every vertex in D has the same number of neighbours in Cy, Co, C3, Cy and C5 modulo 2.

(iii) One of the following holds (vertices are ordered, from left to right):

(a) For every i € Z/5Z, the induced subgraph on C; U Ciy1 is either > or and the

[ ) [ )
induced subgraph on C; U Ciio is either ( or i .
[}
*————0

[ { ]
(b) For every i € Z/5Z, the induced subgraph on C; U Ciiq is either or .>< and the
o——©

[ [ )
induced subgraph on C; U Ciio is either ( or i .

(c) For every i € Z/5Z, the induced subgraph on C; U Citq is either ( i cmd the
induced subgraph on C; U Ciio is ezther/ or i
[ ]

Let 7 be the permutation on C1U---UC5 that shifts the vertices cyclically to the right. For everyv ¢ C
that has exactly one neighbour w in each C;, replace each edge {v,w} by {v,7(w)}. Replace the induced
subgraph on C1 U ---UC5 by the unique graph such that, according to the cases above:

(a) For every i € Z/5Z, the induced subgraph on C; U Cjy1 remains invariant, and the new induced
subgraph on C; U Ci1o is the former induced subgraph on C; U Cjts.

(b) For every i € 7Z/5Z, the new induced subgraph on C; U Ciy1 is the former induced subgraph on
Ci+1UC42 and the new induced subgraph on C; UC;42 is the former induced subgraph on C; UC;13.

(¢c) For every i € 7/5Z, the new induced subgraph on C; U Ciy1 is the former induced subgraph on
Ci—1UCj+1 and the new induced subgraph on C;UC;1o is the former induced subgraph on C;11UC;12.

The resulting graph is R-cospectral with T".
Similar to the six vertex case, we have the following result:

Theorem 9. AHI10-switching is the only switching that corresponds to a regular orthogonal matrix
of level 2 with one indecomposable block of size 10 and that cannot be obtained by repeated GM- and
AHO-switching.

4 Asymptotic bounds

Let g, denote the number of graphs on n (unlabelled) vertices. In 2005, Haemers and Spence [14]
established a lower bound on the number of graphs on n vertices that have a cospectral mate.

Theorem 10 ([14, Theorem 3]). There are at least n3g,—1(3; — o(1)) graphs on n vertices with a
cospectral mate.

This bound was derived by counting the number of cospectral mates by GM-switching with respect
to a switching set of size 4. Therefore, it is also a lower bound on the number of graphs which have a
cospectral mate via GM-switching. From their proof, we can also deduce a matching upper bound.

Theorem 11. There are n®g,_1 (i + 0(1)) non-isomorphic graphs on n vertices with a GM-switching
set of size 4.

11
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Analogous bounds can be obtained for WQH-switching. Intuitively, there are less graphs with a
WQH-switching set of size 6, because they require more conditions than a switching set of size 4.

Theorem 12. There are between
11
— —o(1)) and  ngu_2(—)""%(2" + o(1))
72 8
non-isomorphic graphs on n vertices with a cospectral mate that can be obtained via WQH-switching
on 6 vertices.

n4gn—2(
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The Four-Color Ramsey Multiplicity of Triangles*
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Abstract

We study a generalization of a famous result of Goodman and establish that asymptotically at
least a 1/256 fraction of all triangles needs to be monochromatic in any four-coloring of the edges
of a complete graph. We also show that any large enough extremal construction must be based on
a blow-up of one of the two R(3,3,3) Ramsey-colorings of Kjg. This result is obtained through an
efficient flag algebra formulation by exploiting problem-specific combinatorial symmetries that also
allows us to study some related problems.

1 Introduction

In 1959, Goodman [17] established precisely how few monochromatic triangles any two-edge-coloring of
the complete graph on n vertices can contain, implying that asymptotically at least 1/4 of all triangles
need to be monochromatic as n tends to infinity. Subsequently, in [18], he also asked for an answer
to the natural generalization of this problem to more than two colors.! It took over 50 years and the
advent of flag algebras for even the case of three colors to be settled: Cummings et al. [7] showed that
asymptotically at least a 1/25 fraction of all triangles need to be monochromatic in any three-edge-
coloring of K,,. For n large enough they also precisely characterize the set of extremal constructions,
showing that the problem is closely linked to the Ramsey Number R(3,3) = 6 as previously noted by
Fox [12, Theorem 5.2]. The purpose of this paper is to study the next iteration of this problem, in
particular establishing an answer in the affirmative to Question 4 in [7] for the case of four colors.

Theorem 1. Asymptotically at least a 1/256 fraction of all triangles are monochromatic in any four-
edge-coloring of Ky, and any sufficiently large extremal coloring must be based on one of the two R(3,3,3)
Ramsey-colorings of Kig.

The proof of this result relies on the flag algebra framework of Razborov [32, 6]. This allows one
to apply a formalized double counting and Cauchy-Schwarz-type argument to obtain bounds for clas-
sic problems in Turdn and Ramsey theory by solving a concrete semidefinite programming (SDP)
formulation. Broadly speaking, the larger this formulation, the better the derived bound becomes.

The major hurdle in establishing Theorem 1 therefore consisted of deriving an efficient formulation
by identifying and exploiting combinatorial symmetries through a parameter-dependent notion of au-
tomorphisms. The resulting proof likely constitutes the largest ezact flag algebra calculation done to
date. The methods developed to derive it strengthen the previous approach of modifying the underly-
ing notion of isomorphism and generalize Razborov’s invariant-anti-invariant decomposition [33]. They

*The full version of this work is available as arXiv:2312.08049 and will be published elsewhere. This work was par-
tially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy — The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).

'He in fact calls the three-color version of this question “an old and difficult problem” and raises the question of more
than three colors in Section 6 of [18]. The precise origin of this problem is unclear.
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are applicable whenever the object we are minimizing has previously ignored symmetries and we hope
that they will therefore find further applications. Accompanying these computational improvements,
we also give an extension of the stability argument previously developed for the three-color case in [7].
We generalize it to the case of an arbitrary number of colors and establish a strong link between the
problem of determining the Ramsey number and the Ramsey multiplicity problem.

2 The Ramsey Multiplicity Problem

We are studying the family of c-colorings of the edges between a finite number of vertices, that is maps
G {{u,v} | u,v €V, u# v} — [c] ={1,...,c} where V is any finite set, but we will use common graph
notation throughout. Let G(©) denote the set of all such colorings and gff) the set of all colorings of order
n. Given colorings H € g,gc) and G € g,(f), we write p(H; G) = [{S C V(G) | G[S] ~ H}|/(}) for the
density of H in G. Note that p(H;G) = 0 if n < k. Denoting the monochromatic coloring of the edges
between vertices in [t] with color i € [c] by K}, a multi-color version of Ramsey’s theorem states that
for any t1,...,t. € N the number R(ty,...,t.) =min ({n e N| {G ¢ ) | p(KL G+ +p(KE;G) =
0} = 0}) is in fact finite. For the diagonal case, where t; = ... =t., we write R.(t) = R(t,...,t). The
study of the parameter
me(t;n) = min p(KY5G) + ...+ p(K5G)
aegly

is known as the Ramsey multiplicity problem for cliques. A simple double-counting argument establishes
that m.(t; n) is monotonically increasing, so that the limit m.(t) = lim,,_,o, m.(t; n) is well defined and
satisfies mc(t) > mec(t;n) for any n € N. Note that m.(t;n) > 0 as long as n > R.(t) and therefore
me(t) > 0 by Ramsey’s theorem.

Concerning upper bounds for m.(t), coloring the edges uniformly at random with the ¢ colors estab-
lishes that

me(t) < = (3). (1)

Another way to obtain an upper bound is by blowing up a coloring of the edges of a looped complete
graph, that is a map C : {{u,v} | u,v € V} — [c]. We use the same notation concerning the vertex
and edge set as we did for unlooped colorings and write £(¢) for the set of all such colorings as well
as E,(f) for colorings of order n. A coloring H € G(© embeds into a given C € E,(cc), if there exists
a (not necessarily injective) map ¢ : V(H) — V(C) satisfying H({u,v}) = C({p(u),¢(v)}) for all
u,v € V(H). We now let B(C) = {H € G | H embeds into C'} denote the family of blow-up colorings
of C'. Note that B(C') contains graphs of arbitrarily large order. Letting

H(H;C) = |{p embeds H into C}| /v(C)*!D
denote the embedding density, we have the following result
Lemma 2. Given any C € E,(:), we have m.(t) < p(K};C) + ...+ p(K§; O).

In our case, the most relevant candidates for colorings C' are obtained by considering a Ramsey-
coloring on r = R._1(t) — 1 vertices avoiding cliques of size ¢ in any of the ¢ — 1 colors. Coloring the
loops with the additional c-th, this implies an upper bound of

me(t) < (Re—1(t) = 1)'7, (2)

see also Theorem 5.2 in [12]. The result of Goodman [17] implies that my(3) = 1/4. This aligns both
with the probabilistic upper bound stated in Equation (1) as well as the Ramsey upper bound stated

in Equation (2), where for the latter we are relying on the trivial case of Ramsey’s theorem, that is
Ri(t) = R(t) =t.
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Given that the former bound dominates when ¢ grows as long as ¢ = 2, Erdds suggested [10] that the
probabilistic upper bound should always be tight in this case. This was disproven by Thomason [39]
for any ¢ > 4 and a significant number of results since then have tried to either determine improved
asymptotics for ma(t) or specific values of it for small ¢ [5, 9, 11, 14, 15, 16, 20, 22, 27, 35, 38, 40, 41, 29].
The problem also links to Sidorenko’s famous open conjecture and the search for a characterization
of common graphs, cf. [4, 36]. As of now, even mg(4) remains open, with the best current lower and
upper bounds of 0.0296 < mg(4) < 0.03014 respectively due to Grzesik et al. [20] as well as Parczyk et
al. [29]. Note that we also obtained a slight improvement of mgy(4) > 0.02961.

For the asymptotic values, there has likewise been scarce progress, with the current best lower bound
of C~t*(1H+e(1) < my(t) for C' & 2.18 due to Conlon [5] and the best upper bound of ma(t) < 0.835-2!7(2)
for t > 7 due to Jagger, Stovicek, and Thomason [22]. Given the lack of progress on the two-color,
diagonal version, there are two obvious directions to explore: the case of more colors, where ¢ > 2, as
well as the off-diagonal case, where ¢ # to.

3 Increasing the number of colors

Studying monochromatic triangles for more than two colors was, as already mentioned in the intro-
duction, suggested by Goodman [18] and resolved for ¢ = 3 by Cummings et al. [7], whose result aligns
with Equation (2) since R2(3) = 6. In order to state their result in its fullest strength, let C(s3)
denote the coloring in L’é?’) obtained by taking the unique Ramsey 2-coloring of a complete graph on
five vertices that avoids monochromatic triangles and coloring the loops with the third color, that is
E1(Cr3,z3)) and Ea(Cps3)) both are 5-cycles and E3(Cps3)) contains all five loops. Let ¥ c g®
now consist of all colorings that can be obtained by (i) selecting an element in B(Cg(33)), (ii) recoloring
some of the edges from the first or second color to instead use the third color without creating any
additional monochromatic triangles, and (iii) applying any permutation of the colors. Note that the
second step implies that the recolored edges must form a matching between any of the five ‘parts’,
though not every such recoloring avoids additional triangles.

Theorem 3 (Cummings et al. [7]). There exists an ng € N such that any element in gy of order
o o L3
n > ng minimizing the number of monochromatic triangles must be in Gey' .

The result characterizes extremal constructions for large enough n, though more recently there

has been increasing interest in deriving stability results based on flag algebra calculations [30]. Let
C}z(3,3,3) and Cﬁ(3,373) denote the two colorings in L'Yé) obtained in a similar way to the previously
defined Cr(33) by respectively taking the two Ramsey 3-coloring of a complete graph on 16 vertices

that avoid monochromatic triangles [19, 23, 24, 31] and coloring the vertices with the fourth color.
Mirroring the construction of géf;), we let Qe(fz) c G® consist of all colorings that can be obtained by

(i) selecting an element in B(C;%(3’373)) or B(C§(3’3’3)),
(ii) recoloring some of the edges from any of the first, second or third color to instead use the fourth
color without creating any additional monochromatic triangles,

(iii) applying any permutation of the four colors.

Theorem 4. There exists an ng € N such that for any € > 0 there exists § > 0 such that any G € 97(14)

of order n > ng with >_¢_, p(K%; G) < my(3;n) + 6 can be turned into an element of gl by recoloring
at most £(5) edges.

Note that this implies that any large enough element in QT(L4) minimizing the number of monochromatic
triangles must be in géf;). Our results in fact show that it likewise can be obtained for the case of three
colors.
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4 The off-diagonal case

The second of the previously suggested directions, that is considering the off-diagonal case, has recently
started to receive some attention [29, 3, 26, 21| with two competing notions of off-diagonal Ramsey
multiplicity having been suggested. The first is due to Parczyk et al. [29] and is concerned with
determining
m(t1,...,te;;n) = min p(Ktll; G)+...+p(Ki;Q).
aegl)
This generalizes the previously defined m.(¢;n) but does not consider the inherent imbalance when for
example ¢ = 2 and t; < t9; minimizing p(Ktl1 G+ p(Ktzz; G3) in this case will be equivalent to enforcing
p(Ktll; G) = 0 and minimizing p(KfQ; (), arelated problem previously suggested by Erdds [10, 28, 8, 29].
This issue was already noted in [29] and subsequently addressed by Moss and Noel [26], who instead
suggested determining
ms(t1,...,te;n) = min - max Alp(Ktll;G)+...+>\Cp(KtCC;G).

() A1, Ae>0
Gegn >\1+---+>\c:1

We will use m(ty,...,t.) as well as mg(t1,...,t.) to respectively denote the limits of both of these
functions as n tends to infinity. Both notions generalize the previous diagonal definition and clearly
ms(ti,...,tc) > m(t1,...,t.). Unsurprisingly, determining mg(¢1,...,t.) has proven much more diffi-

cult, with m(3,4) and m(3,5) having been settled in [29] and ms(3,4) still remaining open. Here we
derive the following result for the weaker of the two notions.

Proposition 5. We have m(3,3,4) = 1/125.

The upper bound follows immediately by generalizing Equation (2) to the off-diagonal case, that is
by noting that
mti,. . ote) < (Rt ter) — 1)1 (3)

and inserting R(3,3) = 6. The lower bound was derived using the same improvements to the flag
algebra calculus that we developed to derive our main result.

5 Discussion and Outlook

The proposed computational improvements were crucial in order to derive a certificate for the upper
bound and stability statement in Theorem 4. They are applicable whenever the problem studied ex-
hibits symmetries with respects to the colors, with the reduction of the number of constraints essentially
factorial in the number of colors. We therefore hope that they find further use for other problems, for
example for improved upper bounds on Ramsey numbers through flag algebras, as recently done by
Lidicky and Pfender [25]. The improvements however are largely not applicable when there are no
previously ignored symmetries in the problem statement, as is for example the case with the famous
(3,4)-Turén conjecture. They may also not be helpful for applications beyond graphs [1, 2, 37, 34],
where there can be more drastic jumps on the numbers of constraints as N is increased.

Besides these computational improvements, it is notable that our generalization of the stability
argument from [7] no longer requires explicit knowledge of the Ramsey colorings underlying the extremal
construction. While in our case the colorings were both known and crucial in order to derive an exact
rather than a floating point-based flag algebra certificate, our main stability result draws a connection
between the Ramsey number R._1(3) and the Ramsey multiplicity problem m.(3), in theory opens up
an avenue to establish a sort of equivalence of the two problems without first explicitly solving both or
even either problem:

1) We could derive a flag algebra certificate for a particular ¢ > 4 establishing m.(3) and meeting
the necessary requirements without explicit knowledge of the R._;(3)-Ramsey colorings. Note
that this would imply the exact value of R._1(3) = m(3)" /2 — 1.
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2) We could show that the Ramsey multiplicity problem satisfies the necessary requirements for

arbitrary ¢ > 3, in particular that Kg,l and K373 have zero density in an extremal construction,
through a purely theoretical argument not relying on the semidefinite programming method and
without explicitly determining m.(3). This would imply that m.(3) = (R._1(3) — 1)~2 without
giving us explicit knowledge of either value.

It should be noted that Fox and Wigerson [13] somewhat recently characterized an infinite family
of 2-colorings for which an upper bound equivalent to the one given by Equation (2) is tight, i.e.,
Turédn graphs determine the extremal constructions for the respective Ramsey multiplicity problem.
They also obtained results for the case of ¢ = 3 colors that are conditioned the conjecturec bound

R(t

,[t/2]) < 273Y R(t,t). At the risk of extrapolating from a sample size of two, this fact motivates us

to go so far as to conjecture the following to be true.

Conjecture 6. For any ¢ > 3, we have mq(3) = (Rc_1(3) — 1)72 and the only extremal constructions
are derived from R._1(3)-Ramsey colorings.
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Speed and size of dominating sets in domination games*
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Abstract

We consider Maker-Breaker domination games, a variety of positional games, in which two players
(Dominator and Staller) alternately claim vertices of a given graph. Dominator’s goal is to fully
claim all vertices of a dominating set, while Staller tries to prevent Dominator from doing so, or at
least tries to delay Dominator’s win for as long as possible.

We prove a variety of results about domination games, including the number of turns Dominator
needs to win and the size of a smallest dominating set that Dominator can occupy, when considering
e.g. random graphs, powers of paths, and trees. We could also show that speed and size can be far
apart, and we prove further non-intuitive statements about the general behaviour of such games.

We also consider the Waiter-Client version of such games.

1 Introduction

Let a hypergraph H = (X, F) and two integers m,b > 1 be given. The (m : b) Maker-Breaker game
on (X, F) is played as follows. Maker and Breaker alternate in moves, where in a move Maker claims
up to m unclaimed elements of the board X, and Breaker claims up to b unclaimed elements of X.
Maker wins if during the course of the game she manages to claim all elements of a winning set, i.e. a
hyperedge from F, while Breaker wins otherwise. Surely, this outcome can depend on who makes the
first move. Therefore, whenever it makes a difference in the following, we will state clearly whom we
assume to be the first player. If m = b = 1, the game is called unbiased; and otherwise it is called
biased. For a nice overview about positional games in general we recommend the monograph [15] as
well as the survey [18].

Let G = (V, E) be a graph. We denote the set of vertices of G by V(G) and let v(G) = |V (G)|.
We will mostly focus on Maker-Breaker domination games, a certain variety of Maker-Breaker games,
which were recently introduced by Duchéne et al. [9]. While most Maker-Breaker games are played on
the edge set of some graph, domination games are played on the vertex set of a given graph G instead.
Two players, who are called Dominator and Staller, alternately claim vertices of G, and Dominator
(who is playing as Maker) wins if and only if she manages to occupy all vertices of a dominating set,
which is a subset of V(G) such that every v € V(@) is either a neighbour of the dominating set or
part of this subset itself. Note that the renaming of the players Maker and Breaker as Dominator and
Staller is done to be consistent with the usual domination games; for an overview on these games we
recommend the book [4].

*The full version of this work will be published elsewhere. This research of the second and fourth author is supported
by Deutsche Forschungsgemeinschaft (Project CL 903/1-1).
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Let var(G,m : b) denote the smallest number of rounds in which Dominator can always win the
(m : b) Maker-Breaker domination game on G, provided that she starts the game, and where we set
ymB(G,m : b) = oo if Dominator does not have a winning strategy. Similarly, let v}, 5(G,m : b)
denote the smallest number of rounds for the case when Staller starts the game, and for short, let

YmB(G) == vup(G,1:1) and ), 5(G) :==v},5(G,1:1).
2 Known results

In their paper which introduced Maker-Breaker domination games, Duchéne et al. [9] proved that
deciding who wins an unbiased Maker-Breaker domination game is PSPACE-complete. On the other
hand, Gledel et al. [13] put a focus on the number of rounds which Dominator needs to win, and
determined vy/5(G) and v}, 5(G) precisely when G is a tree or a cycle. Partial results for Cartesian
products and paths [8, 11] as well as Corona products [7] of graphs were obtained afterwards as well.
Additionally, Gledel et al. [13] provided examples which show that the domination number v(G) of a
graph G and the Maker-Breaker domination numbers vy/5(G) and v}, 5(G) can take arbitrary values
with the obvious restriction that v(G) < yap(G) < ¥},5(G). In particular, all these three values can
be arbitrarily far apart from each other.

Theorem 1 (Theorem 3.1 in [13]). For any integers 2 < r < s < t, there exists a graph G such that
YG) =7, ymuB(G) = s and vy, 5(G) = t.

3 Our results I: unbiased games

First we are interested in the general behaviour of domination games in the unbiased setting and, in
particular, to find necessary or sufficient conditions for Dominator to win in given time. In this regards,
Gledel et al. [13] already proved the following proposition. For this, for a graph G, let X, (G) denote
the number of dominating sets of size v of G.

Proposition 2 (Proposition 3.3 in [13]). If G is a graph and X,(G) < 20~ then vp5(G) > 7(G).

Instead of looking at the number of smallest possible dominating sets, we proved the following
minimum degree condition for Dominator to have a winning strategy.

Theorem 3. Let n be a positive integer and let 6(G) denote the minimum degree of G. If G is a graph
on n vertices with §(G) > logy(n) — 1, then Dominator wins the (1 : 1) Maker-Breaker domination
game on G.

Moreover, the bound on §(G) is asymptotically best possible. For infinitely many n, there is a graph G
on n vertices and with 6(G) > logy(n) — 2 such that Staller wins the (1 : 1) Maker-Breaker domination
game on G.

Next to this, when asking for the existence of winning strategies, it seems natural to study the
behaviour of the Maker-Breaker domination game when played on a randomly chosen graph. Let
G ~ Gy p denote a graph sampled from the binomial random graph model, where each edge of a graph
with n vertices is present with probability p. When we play a Maker-Breaker domination game on
such a graph with constant probability p, we have the following bound on the number of turns that
Dominator needs to win.

Theorem 4. Ifp € (0,1) is constant and G ~ G, p, then a.a.s.
YmB(G) = (1 + 0(1)) log /(1py(n).

Although the proofs of both Theorem 3 and Theorem 4 can be done with fairly standard methods
from positional games theory, we believe that these statements are important for getting a general
intuition for domination games and for predicting the outcome of such games.
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4  Our results II: biased games

A lot of research in positional games considers games with a bias, yet we do not know of any paper
considering biased versions of Maker-breaker domination games. As a first step, we extend [13] by
proving results for biased game in which Dominator wants to dominate all vertices of the power of
any path, or all vertices of a tree. Let P* denote the k-th power of a path with n vertices. Then the
following theorem holds which can be proven with an inductive argument that mainly involves ad-hoc
winning strategies with case distinctions.

Theorem 5. For all integers b, k < n it holds that

n—1
Prb:il)y=|—-—"—|.
For a given a tree T and a bias b, let us say that T is b-good if we can recursively delete vertices,
which have exactly b leaf neighbours, and also delete these leaf neighbours, until we reach a forest
where every vertex has at most b — 1 leaf neighbours. Then the following holds.

Theorem 6. Let T be a tree with v(T) > 2. Then the following are equivalent:

(i) Dominator wins the (b: 1) game on T when Staller is the first player.
(ii) T is b-good.

While the proof of the implication (i)=-(ii) is a simple exercise, the other direction is less trivial.
Here, we do an induction for a slightly stronger statement which considers games in which Dominator’s
goal is to dominate only a certain subset of vertices of T'. Moreover, by having this more general
statement we are also able to give an analogue theorem for the case when Dominator is the first player.
We skip the details here, and will soon make them available on arXiv.

Additionally, in the case that a given tree T' is not b-good, we are still able to prove the following
quantitative statement.

Theorem 7. For every tree T' it holds that Dominator can dominate at least (1 — ﬁ) v(T) vertices

in the (b: 1) game on T. Moreover, the bound is sharp.

Note that for the above games involving trees, we do not consider Staller’s bias to be larger than
1 due to the fact that with bias 2, Staller can already win the game within one round, by claiming
a leaf and its neighbour. Still, for other graphs, it makes sense to increase Staller’s bias and in fact,
interesting (and maybe surprising) behaviours can be shown, see Theorem 8.

Before stating this theorem, note that a nice property of (m : b) Maker-Breaker games is that these
are monotone with respect to each of the biases m and b. That is, roughly speaking, increasing the bias
of one of the players can never be a disadvantage for this player; see e.g. [2, 15]. This observation leads
to the natural definition of threshold biases, which in many cases have proven to be related to properties
of random graphs, see e.g. [12, 17]. When both biases get increased simultaneously, we however cannot
expect monotonicity in general. For an example, Balogh et al. [1] considered the 2-diameter game in
which Maker’s goal is to occupy a spanning subgraph of K, with diameter 2, and they proved that
Breaker wins the (1 : 1) variant of this game, while Maker has a winning strategy for the (2 : b) variant
even when b < %nl/ 8(logn)~3/8, provided n is large enough. In particular, the (b : b) variant is won by
Maker for every constant b > 2 if n is large.

Now, looking only at these fair (b : b) games, the above example could still be considered to be
monotone for all b > 1, since increasing b never worsens Maker’s chances of winning. So, one could
wonder whether such a behaviour always holds for fair Maker-Breaker games. With our next result we
show that this is not the case, even for Maker-Breaker domination games.

Theorem 8. Let B C N be any finite set. Then there exists a graph G, such that Dominator wins the
(b:b) Maker-Breaker domination game on G (when Dominator starts) if and only if b ¢ B.
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5 Our results III: speed and size

Another interesting question is the following: when playing the (m : b) Maker-Breaker domination
game on a graph G, of what size is the smallest dominating set which Dominator can always claim?
Let syrp(G,m : b) and syrp(G) = syp(G,1: 1) denote this values when Dominator starts the game,
and let s, 5(G,m : b) and s, 5(G) = spyp(G,1 : 1) denote this value when Staller starts, where again
we set such a value to oo if Dominator does not have a winning strategy. A priori it is not clear why
the minimal number of rounds and the minimal size of a dominating set that Dominator can achieve
should be different. In fact, from the proofs in [13] it can be deduced easily that yy/5(G) = syp(G)
and 7, 5(G) = s, 5(G) hold when G is a tree or a cycle. However, in contrast to this, we can prove the
following statement which, roughly speaking, says that all these parameters in questions can take almost
arbitrary values and hence can be arbitrarily far apart. Note that this statement is a strengthening of
Theorem 1 from [13].

Theorem 9. For any biases m < b and any integers r, s, s, t,t' such that m+1 < r,max{2m+1,r} <
s<s,t<t,s<m-t,s <m-t, there exists a graph G such that

YG) =,
sup(G,m:b) =s and yyp(G,m:b) =t
svyp(G,m:b) =5 and vy p(G,m:b)=t.

One step in the proof of this theorem is to provide a construction which allows us to transfer
constructive results from general Maker-Breaker games to domination games. We can also use this
transference construction to prove the following rather non-intuitive result:

Theorem 10. For any biases m,b with m < b and any integers t > s > 2m + 1, there exists a graph
G such that syp(G @ m : b) = s, but Dominator cannot occupy a dominating set of size s before she
has occupied another minimal dominating set of size t.

Moreover, with similar arguments, we can show the following result which roughly states that claim-
ing a smallest possible dominating set can take Dominator arbitrarily much longer than claiming an
arbitrarily large dominating set which can be claimed in optimal time. Hence, as already supported
by Theorem 9, studying the parameters sy;p and /g can be two very different problems which may
require very different tools when proving exact results.

Theorem 11. For any biases m,b with m < b and any integers t’ >t > s > s> 2m + 1, there exists
a graph G such that ypp(G,m : b) =t and syp(G,m : b) = s, but in the (m : b) Maker-Breaker
domination game on G we have that

e s’ is the smallest size of a dominating set that Dominator can get within t rounds,

e 1’ is smallest number of rounds that Dominator needs to claim a dominating set of size s.

6 Our results I'V: Waiter-Client domination games

Another variety of Maker-Breaker games are Waiter-Client games (earlier called Picker-Chooser games,
see e.g. [2]), which have received increasing attention lately, ranging from results on fast winning
strategies [5, 10] over biased games [3, 14, 19] to games played on random graphs [6, 16]. In the following
we will stick to the case of unbiased Waiter-Client games. On a given hypergraph H = (X, F), these
games are played almost the same way as Maker-Breaker games with the following difference: In every
round, Waiter chooses two unclaimed elements of the board X and then Client decides which of these
elements goes to Waiter while the other one goes to Client. Waiter wins if and only if she manages to
claim all elements of a winning set from F.
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So far, domination games have not been studied in this setting. So, we also aim to give first results for
Waiter-Client domination games and on the relation of Waiter-Client and Maker-Breaker domination
games. Given a graph G, we define the Waiter-Client domination game on G in the obvious way:
Dominator (playing as Waiter) offers two unclaimed vertices of G and then Staller (playing as Client)
picks one of these vertices for himself and the other goes to Dominator. In accordance with previous
notation, we denote with vy ¢(G) the smallest number of rounds in which Dominator can always occupy
a dominating set in the Waiter-Client domination game on G, and we let syy¢(G) denote the size of
the smallest dominating set that Waiter can always claim. For our first results in this setup, we can
prove that for cycles and trees the game behaves the same way as in the Maker-Breaker setting [13]
(when Breaker starts).

Theorem 12. For everyn > 3,

wel(Cn) = swelCu) = |5 -

Theorem 13. Let T be a tree on n vertices. If T has a perfect matching, then

n

well) =swo(T) = 5.

In all other cases, Dominator does not win the (1 : 1) Waiter-Client domination game on T'.

Due to these results and due to the fact that in the literature, Waiter most of the time can play at
least as good as Maker can do in the analogue game with same winning sets, it seems natural to wonder
whether relations such as vy o (G) < vy p(G) can be proven for arbitrary graphs G. As our last result
we negate this with the following theorem which states that the parameters vy o (G) and v p(G) can
take almost arbitrary values and, in particular, vy ¢(G) can be much larger than v4,5(G). The proof
again uses our transference argument from the previous section together with suitable hypergraphs on
which either Maker (in the usual Maker-Breaker game) or Waiter (in the usual Waiter-Client game)
can win fast, while the other player does not have a strategy that ensures a fast win.

Theorem 14. For all integers s,t > 7 there is a graph G such that vy, 5(G) = s and ywc(G) = t.
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Abstract

The aim of this paper is to address the system AX =Y, where A = (a;;) € My xn(S), Y € S™,
and X represents an unknown vector of size n, with S being an additively idempotent semiring.
Should the system possess solutions, we aim to comprehensively characterize a particular solution
as it is the so-called maximal solution with respect to an order that is induced by the addition of
the semiring. Additionally, in the specific scenario where S is what we call a generalized tropical
semiring, we offer a thorough characterization of its solutions along with an explicit estimation of
the computational cost involved in its computation.

1 Introduction

A semiring (S, +,-) is a set S with two internal operations, +, - where (S, +) is a commutative monoid,
and (5, -) is a monoid, being both internal operations connected by a ring-like distributivity. We also
assume that for both operations, there exists an identity element; 0 for + and 1 for -. In addition, a
semiring (S, +,,0,1) is said to be additively idempotent if x + x = x for all x € S.

One of the most important examples of semirings are the tropical semirings. The semiring (R, min, +)
appeared in optimization problems such as Floyd’s algorithm for finding shortest paths in a graph [5].
However, a systematic study of the tropical semiring began only after the Simon’s work (see [3]) and
since then the study has significantly increased due to the huge number of applications.

The first paper [4] about linear algebra on such a semirings appeared in 2005. However, solving
linear systems was a major task from the beginning of tropical algebras, but it was not until the work
of Viro [6] that the problem actually took a most present role in mathematics. Moreover, this problem
has already proved to be very interesting from the algorithmic point of view as it is known to be in
NP N coNP [T7].

Letting (S, +, ) be an additively idempotent semiring, we want to solve the system AX =Y, where
A = (a;j) € Mymxn(S), Y € 8™ and X is an unknown vector of size n. In the context where the system
AX =Y admits solutions, we can compute the maximal one. Moreover, within the specific framework
where S is a generalized tropical semiring (see Definition 1.1.1), we present a complete characterization
of all its solutions, with an explicit polynomial computational cost.

2 Preliminars

We will recall some basic background and introduce the notation we will use through this work.

*The full version of this work can be found in [10] and has been submited to Funzy set and Systems. This research is
supported by the Department of Mathematics, University of Almerfa.
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Definition 1. A semiring (R,+,-) is a non-empty set R together with two operations + and - such
that (R,+) is a commutative monoid, (R,-) is a monoid and the distributive laws hold:

a(b+c) =ab+ ac
(a+b)c =ac+ bc
We say that (R, +,-) is additively idempotent if a + a = a for all a € R.

Example 2. From the work of J. Zumbrégel [13], the following additively idempotent semiring with 5
elements can be obtained:

+10 1 2 8 4 5 101 2 38 4 95
o0 1 2 8 4 5 oo 0 0 0 0 0
111 1 1 1 1 5 110 1 2 8 4 &
212 1 2 1 2 5 210 2 2 0 0 5
318 1 1 8 &8 6 310 38 4 38 4 3
414 1 2 58 4 5 410 4 4 0 0 3
516 6 5 6 5 4 510 65 2 65 2 5

Example 3. In [1/], a classification of all additively commutative semirings with two elements is
presented. In that article, we can see that the set {0,1} endowed with the following operations results
in an additively idempotent semiring:

Definition 4. Let R be a semiring and (M,+) be a commutative semigroup with identity Opr. M is a
right semimodule over R if there is an external operation - : M x R — M such that

1 0
0 0]0
1 171

=l
o OO

1

(m-a)-b=m-(a-b)
m-(a+b)=m-a+m-b
(m+n)-a=m-a+n-a

OM A= OM
for all a,b € R and m,n € M. We will denote m - a by the concatenation ma.

In an additively idempotent semiring (R, +,-), an order can be induced by the addition operation,
by:
a < b if and only if a + b = b. (3)

This order respects the operation in R and enables us to define a partial order in R for every positive
integer n.

X=(x1,...20) >2Y = (y1,...,yp) ifand only if ; > y; Vi=1,...,n. (4)

In addition, note that this order also respect the multiplication by a square matrices of order n whose
entries are in R.
Let AX =Y be the system of linear equations in R with indeterminates z1, ..., z,,
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ail a12 A1n Y1
a1 a22 a2n, Y2
r + : T2+ + : =1 |, (5)
A(m—1)1 A(m—1)2 A(m—1)n Ym—1
am1 Am2 Amn Ym

with a;;,y;, € Rfor all ¢ = 1,...,n j = 1,...,m. Let A; be the j — th column of A, A; =
(@a15,a2j,...,am;), then, the previous system can be written as

Ajxy + Asxo+ -+ Apz, = Y. (6)

Definition 5. Let R be an additively idempotent semiring, and let AX =Y be a linear system of
equations. We say that X is the mazximal solution of the system if and only if the two following
conditions are satisfied

1. X € R" is a solution of the system, i.e. AX =Y,
2. if Z € R™ is any other solution of the system, then Z < X
The following result depicts a method to compute the maximal solution of such a system of equations.

Theorem 6. Given (R,+,-) an additively idempotent semiring, let W; = {x € R: zA; +Y =Y}
Vi=1,...,n. Suppose that these subsets have a maximum with respect to the order induced in R

C; = max W;. (7)
If XA =Y has as a solution, then X = (C4, . .. Cy) is the maximal solution of the system.

Proof. If there is a solution Z = (z1,..., z,), then, it is enough to proof that z; - Ay +Y =Y for all
k =1,...,n, and therefore we can show that zp € Wi. As a consequence, X > Z. Finally, we show
that X is a solution, and therefore, it is the maximal solution. ]

In [10, example 3.19], an example of a direct application of this theorem can be found.

3 Particular cases

An important example of the considered semirings is the so-called tropical semiring, which is the
semiring given by (R U {oco}, max,+). The following definition is a generalization of this concept.

Definition 7. Let (R,+,-) be a semiring. We say that R is a generalized tropical semiring if
a+b=aora+b=">0ofallabeR.

It is straightforward that the tropical semiring is the tropicalized of R with the usual operations.

Using the argument given in the proof of the preceding theorem to this specific case, allows us to
provide the following result. A complete proof of theorems 8 and 9 can be found in [10, Theorem 3.6]
and [10, Theorem 3.12] respectively.

Theorem 8. Let (R,+,-) be a generalized tropical semiring where (R,-) is a group. Then the linear
system A- X =Y has at least one solution.

Tropical lineal algebra over tropical semirings appears naturally in several problems of graph theory
(c.f. [12] or [11]). The following result shows a characterization of all solutions of the linear system

AX =Y.
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Theorem 9. Let R be a generalized tropical semiring, and let AX =Y be a system of equations with
Y = (y;) € R™ and A = (a;j) € Matnxm(R). X = (21,22, ...,2n) 15 solution of the system if and only
if

1. amxz—l—y] =Y ’VJ = 17'”7m7

2.Vj=1,...,m 3h e {1,...,n} such that a; - xp, =y; .

Another significant case is that of finite idempotent semirings, which has garnered renewed interest in
the scientific community due to its potential applications in cryptography. As an example, [8] provides
a characterization of all finite commutative simple semirings, among which one of the five possible cases
is the additively idempotent semiring.

Then, due to the finiteness of the semiring we get that

Theorem 10. Let R be an additively idempotent finite semiring, and let AX =Y be a system of
equations, with Y € R™ and A = (a;j) € Matp,xm(R). Then, the system is compatible, W; = {x € R :
x-Ai+Y =Y} s finite and

X = (z1,...,2,) such that x; = Z x (8)
zeW;

s the maximal solution of the system.
An important consequence of this result is that we are able to provide a cryptanalysis of the key

exchange over finite semirings that are congruence simple and that is introduced in [2] and that it is
published in [9].
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Abstract

A meta-conjecture of Coulson, Keevash, Perarnau and Yepremyan [6] states that above the
extremal threshold for a given spanning structure in a (hyper-)graph, one can find a rainbow version
of that spanning structure in any suitably bounded colouring of the host (hyper-)graph. We solve

one of the most pertinent outstanding cases of this conjecture, by showing that if G is an n-vertex

k-uniform hypergraph with 6x_1(G) > (ﬁ + 0(1)) n, then any bounded colouring of G' contains

a rainbow loose Hamilton cycle.

1 Introduction

A famous theorem of Dirac [11] states that any n-vertex graph G with 6(G) > n/2 contains a Hamilton
cycle. This inspired many further results exploring the optimal minimum degree conditions for certain
spanning structures in a host (hyper-)graph. This area, sometimes referred to as ‘Dirac theory’, is a
cornerstone of modern extremal combinatorics and has flourished in recent decades due to powerful
tools being developed to tackle these questions, such as the regularity method [31] and absorption [27].
In graphs, this has led to a deep understanding of the full picture with celebrated results including the
minimum degree threshold for F-factors [24] (vertex disjoint copies of F' covering the vertex set of the
host graph) for arbitrary graphs F' and the so-called Bandwidth Theorem [3] of Bottcher, Taraz and
Schacht.

In hypergraphs, the situation is considerably more complex. This is, in part, due to the various
ways in which one can generalise the graph case. For example, when generalising Dirac’s theorem to
hypergraphs, one has a range of choices as to which minimum degree condition is considered and what
type of Hamilton cycle is desired. Indeed, for a k-uniform hypergraph G (k-graph for short), one can
consider

5,(G) := min {\{e CEG):Tce)|:Te (VE,G)> } ,

for 1 < j < k—1. The case j = k — 1 is often called the codegree of the k-graph G. Likewise with
Hamilton cycles, one can consider a cyclic ordering of the vertices of G and require that each edge of
the Hamilton cycle occupies k consecutive vertices in the ordering and every pair of consecutive edges
intersect in precisely ¢ vertices for some 1 < ¢ < k — 1. Such a Hamilton cycle is called a Hamilton
l-cycle and when ¢ = 1, we refer to it as a loose cycle, whilst the case ¢ = k — 1 is referred to as a tight
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cycle. Note that if an n-vertex k-graph G has a loose Hamilton cycle, then one necessarily has that
(k — 1)|n and similar divisibility conditions hold for the other Hamilton ¢-cycles.

In hypergraphs our understanding of minimum degree thresholds is far from complete despite a
wealth of results. Indeed, even in the case that the spanning structure is a perfect matching, there are
unanswered questions. We refer the reader to the survey [32] on the matter.

Whilst establishing minimum degree thresholds can be a considerable challenge, the lower bounds
often follow from simple constructions that are derived to force the non-existence of the spanning
structure in question. For example, the minimum codegree threshold for a loose Hamilton cycle in

n

a k-graph is (asymptotically) =) and the following example establishes the lower bound. Take n

divisible by 2(k — 1), partition V(G) = AU B such that |A| = 2(%1) — 1 and take any set of k vertices
that intersects A as an edge of G. Then d;_1(G) = |A| and if there was a loose Hamilton cycle in G,
then in the cyclic order defining the cycle, there cannot be 2(k — 1) consecutive vertices from B as this
would contain an edge of the Hamilton cycle but no such edge exists in B. Thus there are at least
ﬁ vertices in A, contradicting the size of A.

The fact that these constructions are contrived and atypical, for example having large independent
sets, suggests that although one cannot weaken the respective minimum degree condition, perhaps one
can strengthen the conclusion of the degree threshold. That is to say, when we are above the minimum
degree threshold (we will informally refer to such (hyper-)graphs as being ‘Dirac’) with respect to a
given spanning structure, the Dirac (hyper-)graph is in fact robust with respect to containing that
spanning structure. Various results of this flavour have been established, in particular in the context
of Dirac’s condition for Hamilton cycles, see the nice survey of Sudakov [30]. For example, it has been
shown that there are in fact many Hamilton cycles above the extremal threshold [10], as well as many
edge-disjoint Hamilton cycles [9]. In this paper, we will consider a notion of robustness related to
finding rainbow spanning structures in any bounded edge colouring of the Dirac (hyper-)graph. This

is motivated by the classical study of rainbow spanning structures in certain colourings of graphs.

1.1 Rainbow spanning structures

A subgraph H of an edge coloured graph G is said to be rainbow if each of the edges of H is a
different colour. Rainbow subgraphs appeared early on in combinatorics via connections with design
theory. Indeed, already Euler [15] was interested in transversals in Latin squares, which is a collection
of entries in the Latin square with distinct rows, columns and symbols. Viewing an n x n Latin square
as an edge colouring of a complete bipartite graph, with parts corresponding to columns and rows and
colour classes corresponding to symbols, a transversal becomes a rainbow matching. Several beautiful
conjectures were posed in design theory, that are only now being solved by heavily utilising connections
to rainbow spanning subgraphs. Indeed, perhaps the most famous such conjecture, known as the Ryser-
Brualdi-Stein conjecture [4, 28, 29] states that every n x n Latin square has a transversal of size at least
n—1 and one of size n when n is odd. The first part of this (establishing the existence of transversals of
size n — 1) has only recently been solved by Montgomery [25]. Translating to colourings of graphs, the
Ryser-Brualdi-Stein conjecture asserts that one can always find an (almost) perfect rainbow matching.
Here, the conditions of the Latin square are equivalent to the colouring of K, , having n colours and
being proper, that is, there are no two edges of the same colour at a vertex.

From a graph theoretic perspective one can ask more generally what conditions on a colouring of a
host graph guarantee the existence of a rainbow (almost) spanning structure of interest. The Ryser-
Brualdi-Stein conjecture, as well as a host of other conjectures inspired by design theory, suggest that
the colouring being proper is enough. In search for other conditions, researchers noted that a colouring
being proper is equivalent to saying that the colouring is locally bounded, that is, at each vertex we see
every colour at most once, or more generally, a bounded number of times. One can also then consider
globally bounded conditions where we bound the size of each colour class.

An early example of interest in rainbow structures under global bounded conditions on colouring
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was due to Erdés and Stein (see [13]) who asked whether there is some constant ¢ > 0 such that any
colouring of K, with at most cn edges of each colour contains a rainbow Hamilton cycle. This was then
explicitly conjectured by Hahn and Thomassen [18] and, after several results towards the conjecture,
was solved by Albert, Frieze and Reed [1]. A generalisation to hypergraph Hamilton cycles was then
given by Dudek, Frieze and Ruciriski [12]. There has been a wealth of similar results studying different
spanning structures.

One may wonder how optimal these results are. For example, note that the result of Albert, Frieze
and Reed is tight up to the choice of constant ¢ > 0; a value of ¢ < 1/2 is certainly necessary as
otherwise there may not be enough colours to have a rainbow Hamilton cycle. In the setting of perfect
matchings in complete bipartite graphs, Stein [29] boldly conjectured that the condition of being proper
could be dropped and replaced by each colour class simply having size n. This turned out to be false
with Pokrovskiy and Sudakov [26] recently giving a construction with n edges of each colour and no
rainbow transversal bigger than n — Q(logn). This shows that in this setting, a colouring having a
global bound of n edges of each colour is not enough to guarantee the desired rainbow matching of size
n — 1. However, in what was a hugely influential paper and the first in this area of finding rainbow
structures in globally bounded colourings, Erdés and Spencer [14] showed that any colouring of K, ,
with at most 1z edges of each colour contains a rainbow perfect matching.

1.2 Rainbow structures in Dirac (hyper-)graphs

The vast majority of results concerning rainbow spanning substructures in bounded (and proper)
colourings have focused on the case where the host graph is a complete (hyper-)graph or complete
bipartite graph. When considering other possible host graphs, Dirac graphs arise naturally. Indeed,
in order to contain a rainbow copy of a desired spanning subgraph in any bounded colouring, the
host graph certainly needs to contain copies of that subgraph and so imposing the existence of such
subgraphs through minimum degree conditions gives a natural class of candidate host graphs. This
perspective was first considered by Cano, Perarnau and Serra [5] who showed that one can find a
rainbow Hamilton cycle in any globally o(n)-bounded colouring of G when G is either an n-vertex
graph or a balanced bipartite graph with n vertices in each part, and such that G has minimum degree
6(G) > (14 0(1))5. The asymptotic minimum degree condition was then replaced to give an exact
minimum degree condition 6(G) > 4 by Coulson and Perarnau, first in the bipartite case [7] and then in
the non-bipartite case [8] as in Dirac’s original theorem. These results thus give evidence of robustness
for the extremal thresholds for Hamilton cycles. Note also that in the bipartite case, these results can
be seen as a direct strengthening of the result of Erdés and Spencer [14], allowing for host graphs that
are not complete (at the expense of a potentially worse constant for the boundedness).

Further examples of these types of results came from Coulson, Keevash, Perarnau and Yepremyan [6]
who proved that (asymptotically) above the minimum degree for a given (hyper-)graph F-factor, one
finds a rainbow F-factor in any suitably bounded colouring, and from Glock and Joos [16] who gave a
rainbow version of the famous blow-up lemma [22], which allowed them to give results of this flavour in
considerable generality for graphs, in particular providing a rainbow version of the bandwidth theorem
[3]. We remark that a nice feature of the work of [6] is that they could establish such a result, even in
cases where the minimum degree threshold has not yet been determined.

All of these results provide evidence of a general phenomenon and caused Coulson, Keevash, Perar-
nau and Yepremyan [6] to explicitly give the “meta-conjecture” that once one is above the extremal
threshold for a given spanning structure, rainbow copies of that structure can be found in any suitably
bounded colouring of the Dirac graph. Our main result provides further evidence for this conjecture,
by establishing that this is the case for loose Hamilton cycles in hypergraphs.

Theorem 1. For any 2 < k € N and ¢ > 0, there exists p > 0 such that for any sufficiently large
n € (k—1)N, the following holds. If G is a k-graph with 6x_1(G) > (1 +5)ﬁ and x : E(G) — N is

colouring of G with at most un*~1 edges of each colour and at most un edges of each colour containing
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any given (k — 1)-set of vertices, then there exists a rainbow loose Hamilton cycle.

Theorem 1 provides a first generalisation of the result of Coulson and Perarnau [8] to the hypergraph
setting. Note that the minimum degree condition is asymptotically tight due to the construction
discussed above. The fact that hypergraphs with minimum codegree at least (1 + o(l))ﬁ contain
loose Hamilton cycles was proven originally by Kiithn and Osthus [23] for & = 3 and for general k by
Han and Schacht [19] and independently by Keevash, Kiithn, Mycroft and Osthus [20]. Our result can
thus be seen as a direct strengthening of these results, providing robustness. We remark that the tight
minimum codegree threshold (without the o(1) factor) for the existence of a loose Hamilton cycle is
unknown and seems to be a considerable challenge.

Note also that the global bound in Theorem 1 is also tight, up to the choice of the constant pu.
Indeed, some global bound of the order of n*~! is needed to guarantee enough colours. The local
bound in Theorem 1, requiring each (k — 1)-set to be in at most un edges of any given colour, is rather
weak in comparison to requiring a colouring to be proper, for example. It is unclear whether this local
bound is in fact necessary. Indeed this condition arises as somewhat of a technicality within the proof
which nonetheless seems hard to bypass. This local boundedness condition was also present in the
previous result of Coulson, Keevash, Perarnau and Yepremyan [6] on rainbow factors and it can be
shown to be necessary when dealing with clique factors or tight Hamilton cycles (for which it remains
an open question to prove an analogue of Theorem 1). At the cost of this extra local bound, Theorem 1
strengthens the previously mentioned work of Dudek, Frieze and Rucinski [12] who proved Theorem 1
in the case that the host hypergraph G is complete. Finally, we mention a result of Antoniuk, Kamcev
and Rucinski [2] who showed that under the same assumption that 0;_1(G) > (1 + 0(1))%, any
colouring in which each vertex is contained in at most o(n*~1) edges of the same colour results in a
Hamilton loose cycle that is properly coloured, that is, the Hamilton cycle does not contain incident
edges of the same colour. Our result strengthens the conclusion by guaranteeing a rainbow loose
Hamilton (which is in particular proper) at the cost of adopting both a local bound and a global bound
for the colouring, the latter being necessary for the rainbow setting, as previously discussed.

2 A proof overview

The lopsided local lemma, originally introduced by Erdds and Spencer [14] in the context of rainbow
perfect matchings in K, ,,, provides a general tool for finding rainbow spanning structures in bounded
colourings of host graphs. The setup works by taking a uniformly random copy of the desired spanning
structure and defining bad events based on two edges of the same colour appearing in this random
sample. This setting does not have limited dependence between our bad events and so the original
local lemma cannot be used to show that the uniform copy is rainbow with some positive probability.
Nonetheless, Erdés and Spencer showed that the desired conclusion of the local lemma indeed holds
if we can bound the amount of negative dependence between bad events. In the setting of complete
(bipartite) graphs, one can carefully count copies of the desired spanning structure subject to certain
bad events not taking place, allowing calculations of conditional probabilities necessary to show such
negative dependence.

When the host graph is no longer complete, precise counts of spanning structures are no longer
accessible. The key idea in the initial works [5, 7, 8] in Dirac host graphs, is that one can still estimate
the required conditional probabilities necessary, by applying a “switching method”. Here one locally
alters some fixed copy of the spanning structure in a way that maintains some fixed events that we
want to condition on. If we can find many ways of performing valid switchings, we can provide upper
bounds on conditional probabilities to show that there is enough negative dependence in the collection
of bad events for the lopsided local lemma. This switching approach was then used again in the work
of Coulson, Keevash, Perarnau and Yepremyan [6] finding rainbow F-factors. Their key innovation was
that one can find many switchings via probabilistic methods. They take a random sample of the vertex
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set (in fact, a random sample of copies of F' in the factor we are switching from) and show that with
probability bounded away from 0 one can perform the switch within this random set, obtaining a new
factor where some copies have been reshuffled. This translates to having many subsets providing valid
switches and opens up the power of the probabilistic method to prove the existence of valid switchings.
Indeed, with high probability, the sampled vertex set will inherit many nice properties of the host
graph, in particular the minimum degree condition. After some work (to ensure the switching is valid),
this allows the authors of [6] to apply the existence of a sub-F-factor in the random vertex set as a
black box, using that the minimum degree condition is satisfied.

Our proof again follows this template and we will again use random samples to provide many switch-
ings, setting up an application of the lopsided local lemma. There is one major hurdle in our setting
as opposed to F-factors though, which comes from the fact that we are now dealing with connected
spanning structures. This means that we cannot locally adjust our copy within the random set in-
dependently of the rest of the spanning structure. This hurdle was noted also in [2] and means that
one can no longer use black box results in the random set of vertices. In order to overcome this, we
use absorption techniques to rebuild the loose Hamilton cycle in the random set in such a way that
it provides a valid switching. In more detail, we use an absorbing strategy due to Han and Schacht
[19] which gives an absorbing structure as well as a connecting lemma that we can use to piece back
together our loose Hamilton cyle.

To our knowledge, this is a first example of absorption being used in the context of the local lemma
and we find it a nice feature of our proof that it simultaneously incorporates two of the most powerful
methods in modern extremal and probabilistic combinatorics.

3 Further directions

We believe our method of using the lopsided local lemma in conjunction with absorption techniques
has the potential to prove more results in the setting of robustness via rainbow structures in bounded
colourings. In particular, for different Hamilton ¢-cycles in hypergraphs under different minimum j-
degree conditions, whenever there is an existing proof for the existence of the cycle that appeals to
absorption techniques, there is a hope to apply our framework. This is reminiscent of recent work in the
setting of transversal spanning structures [17] and robustness via percolation [21], where they provide
certain ‘absorption-necessary’ conditions in order to give general results that follow from the previous
work in establishing extremal thresholds, in particular covering many different types of Hamilton cycle
and minimum degree conditions. The full power of our approach will be explored in a forthcoming
journal version of this extended abstract.
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d-regular graph on n vertices with the most £-cycles

Gabor Lippner! and Arturo Ortiz San Miguel*!

Dept. of Mathematics, Northeastern University, Boston, MA, USA

Abstract

We construct the unique d-regular graph G with the maximum number of k-cycles for kK = 5,6
with a fixed number n = ¢(d + 1) of vertices for k = 5 and n = 2¢d vertices for even k = 6. Using
a Mobius inversion relation between graph homomorphism numbers and injective homomorphism
numbers, we reframe the problem as a continuous optimization problem on the eigenvalues of G by
leveraging the fact that the number of closed walks of length k is tr(A*). For k =5 and d > 3, we
show G is a collection of disjoint Kyy; graphs. For d = 3, disjoint Petersen graphs emerge. For
k = 6 and d large enough, G consists of copies of K4 4. We conjecture that for odd k and sufficiently
large d, the optimal G is a collection of K441, while for even k with sufficiently large d, the optimal
G consists of Kg 4.

Additionally, we introduce and give formulas for non-backtracking homomorphism numbers and
backtracking homomorphism numbers, respectively. Moreover, we find the unique d-regular graph
on n vertices with the most non-backtracking closed walks of length k by considering an optimiza-
tion problem on the non-backtracking spectrum of G. We also solve the same problem, but for
backtracking closed walks. Lastly, a corollary gives formulas for the number of 4-cycles and 5-cycles
of a graph with respect to its spectrum, regardless of regularity.

1 Introduction

For given positive integers d, n, k we consider the d-regular graph G on n vertices that maximizes the
number of k-cycles. For convenience, throughout this paper, n will be a multiple of ¢(d + 1) or of
2cd as we are ultimately interested in asymptotic behavior similar to [5]. Note that uniqueness of an
optimizer is not true for all n, d, k. However, if there are no ‘remainder vertices,” then the optimizer is
unique. Here are some preliminary and elementary results from [5].

1. For k=3 and n = ¢(d + 1), ¢ copies of K41 is optimal.

2. For k = 4 and n = 2cd, ¢ copies of K4 is optimal.

3. Let n =c(d+ 1). The d-regular graph with the most K} subgraphs is ¢ copies of Kg1.
First, we give a technical lemma that will be used for the continuous optimization problems that follow.
Furthermore, every graph that we call “optimal” or “maximal” is the unique graph that maximizes the
objective. Furthermore, all optimizers given are graphs that are determined by their spectra [7].

Lemma 1. Let p be a degree k polynomial with a positive leading coefficient. For d large enough, the
constrained optimization problem,

mazximize Zp()\i), subject to Z A =0, Z N = nd, Amax = d, |\ < d,

i=1 i=1 i=1
1s uniquely solved by
M=.=Xye=d, Apjey1 = .=y =—1, if k odd, n = c(d + 1)
M=.=Xye=d, Ayjep1 = =Aopje = —dy Aopjey1 = . = Ay =0, if k even, n = 2cd

*Email: ortizsanmiguel.a@northeastern.edu.
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Proof for odd k. We will show this in two steps. First, that there must be exactly n/c variables with
a value of d, and then that the rest of the variables must be equal to each other.

Step 1: Exactly n/c variables are equal to d.

Case 1: Suppose A, ..., A, satisfy the constraints and that ¢ < n/c of them are equal to d. Then,
for large enough d, it suffices to consider p(z) = zF. Then, since k is odd, \; < d, and the fact that

1> @] > }Zxﬂ, we have
k
td* + EjA’f < (+1)d" + §j N - A
n—¢—1

i=0+1 i=0+2

Case 2: Suppose there are m > n/c variables that are equal to d. Then, for some € > 0,

n n k
Pl A —1Dd* + (d— e)F A €
md+ Y M <(m-Dd" +(d—e)f + ) +—

t=m+l i=m+1

n n k .

-t 32 ote 32 |8 (e 3 (0 ()
i=m+1 i=m4+1 | j=1 J n—m

Thus, the optimizer has A1, ..., A, . = d. Step 2: The rest of the variables are equal.

Suppose that they are not equal. Then, without loss of generality, by the constraints, we can assume
that A, /ep1 > —1> A\ys > ... > Ay so that |)\c/n+1 + 1| < |A—s+1|. Note that if this is not true then
the same holds in the reverse direction. Then,

> ¥ =t (M e et 30 < (M) e B gt

i=m+1 t=n—s i=n—s
for some function g such that the constraints are still satisfied. Thus, Ay = ... =\, /. = d, A, jep1 =
.. = Ap, = —1 is a maximizer. ]

Proof for even k. A similar argument is used to find the solutions. For sufficiently large d, it suffices
to consider p(x) = x*. Suppose there are £ < 2n/c variables that have magnitude d, that [Apyq| > ... >
[An|, and that the constraints are satisfied. Without loss of generality, let Ag;q > 0. Then, for € > 0,

n k
edh+ >N < tdh + M+ F ) <A§— ‘ )

. . n—m
i=0+1 i=0+2

Thus, exactly 2n/c variables have magnitude d. The constraints force the optimizer to be what is
claimed in the statement. O

Lemma 2. For odd k and n = c¢(d + 1), the graph with the mazimal number of closed walks of length
k 1is the graph consisting of ¢ copies of Kqt1.

Proof. 1f there is a graph with adjacency matrix A with eigenvalues \; that solve the optimization
problem,

maximize » A, subject to Y A =0, A =nd, Amax = d,|\i| < d,

i=1 i=1 i=1
then it is an optimizer. By Lemma 1, A\y = ... = A\, = d, A\yjeqy1 = .. = Ay = —1 is optimal. The
graph consisting of ¢ copies of K41 uniquely has this spectrum and is thus optimal. ]

Lemma 3. For even k and n = 2cd the graph with the maximal number of closed walks of length k is
the graph consisting of ¢ copies of K44.
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Proof. The problem is equivalent to the optimization problem in the previous lemma. By Lemma 1,
M=o =Nse =d Ayjey1 = o = Aapje = —d Agpjeq1 = - = Ay = 0 is a maximizer. The graph with
c copies of K4 uniquely has this spectrum. ]

It is remarkable that there exist graphs whose spectra are the solutions to these optimization prob-
lems, which is not a priori the case. This happens for every optimization problem we consider. In
the language of graph homomorphisms we just found maxhom(Cy,G) over all d—regular G with n
vertices. For k-cycles instead of closed walks, the problem becomes maxinj(Cy,G). The following
equations relate these quantities using the Mobius inverse of the partition lattice.

Lemma 4.
hom(H,G) = Y inj(H/P,G).
P
inj(H,G) = > i - hom(H/P,G), with i, = (—1)* =PI T (|s] - 1)!
P SeP

where P ranges over all partitions of V(H) and where |P| is the number of classes in the partition and
S are the classes of P. [6]

It is important to note that some of the resulting quotient graphs will have self-loops. Since G is
simple, these terms vanish. We will use these formulas to find an eigenvalue optimization problem
corresponding to finding the d-regular graph with the most k-cycles. When the context is clear we will
write hom(H) = hom(H,G). We will now display the type of results that can be achieved by using
spectral theory and Lemma 4 by giving a formula for the number of 4-cycles of a graph.

Proposition 5. Given a graph G, with adjacency matriz A and eigenvalues A1, ..., A, the number of

4-cycles in G is
é ([Z ,\;1] —2-.174%1 + 1TA1> ,
i=1

where 1 is the all ones vector. In particular, if G is d-reqular, then the number of 4-cycles is
E i N —nd?® 4+ nd
8 ! ’
i=1
Proof. Notice that the number of 4-cycles is exactly éinj(@;, G). Then, by Lemma 4,
inj(C4, G) = hom(Cy, G) — 2 - hom(Ps3, G) + hom(K3, G).

The first term is the number of closed walks of length 4, the second the number of walks of length 2,
and the last being the number of walks of length 1. O

Theorem 6. Ford > 3 and n = c¢(d+ 1), the d-regular graph on n vertices with the most 5-cycles is ¢
copies of Kqi1. For d =3 and n = 10c, then the optimal graph is c copies of the Petersen graph.

Proof. By Lemma 4, we calculate: inj(Cs,G) = hom(C5) — 5 - hom(K3 + e) + 5 - hom(K3),
where the “+e” means with an antenna. Then, since G is d-regular, we have hom(K3+e) = d-hom(K3).
Thus, we consider the optimization problem,

maximize » A7 + (5 — 5d)A}, subject to > A =0, A2 = nd, Amax = d, |Xs| < d.

i=1 i=1 i=1

By Lemma 1, for d > 3, this is solved when \; = ... = A\, = d and Ac41,..., A\, = —1. The graph
consisting of ¢ copies of K41 has this spectrum. For d = 3, the solution is the spectrum of the Petersen
graph. O
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Alternate proof for Petersen graphs. Consider a 3-regular graph with an edge containing the maximal
number of 5-cycles going through it, which is 11. Then, there is an edge with no 5-cycles going through
it. Thus, the Petersen graph, with 10 5-cycles going through every edge, is optimal. O

This alternate method, which was originally used to find maximal graphs in [5], becomes impractical
for large d and k. The new spectral method works for all d and can be used to obtain formulas for the
number of 4-cycles and 5-cycles of a graph, regardless of regularity.

Corollary 7. Given a graph G with adjacency matriz A with eigenvalues A1, ..., A, the number of

5-cycles in G is
1 n
o ( [Z A7+ 5
i=1

where D is the diagonal degree matrixz and the diag operator sets the non-diagonal entries to zero. In
particular, if G is d-regular then, the number of 5-cycles is

i (Z A+ (5 — 5d) )\3>

Proof. The only term that is not immediately clear is —5 - tr(diag(A43)D). This is the number of
homomorphisms ¢ : K3+e — G. Without loss of generality, this equals the number of homomorphisms
¥ K3 — G with ¢(1) = v times the degree of v summed over all v € G as the antenna may map to
any of the neighbors of v. O

-5 tr(diag(A3)D)> ,

Furthermore, the new method also works for £k = 6. When using Lemma 4, we notice that the terms
where H/P is a tree are constant for d-regular G. So, we can omit them. We get

inj(Cs, G ZAﬁ (6 — 6d)\} —6X2| —3-hom(B,G) +9-hom(K,\ e,G) + C, (%)

for some C' € Z where B is the ‘bowtie’ graph. We note that hom(B) and hom (K4 \ e) cannot be
expressed using eigenvalues. Thus, we need the following.

Lemma 8. For any G, hom(B) > 4 -hom(Ky \ e).
Proof. hom(B) = inj(B) +4 - hom(K4 \ e) + 2 - hom(K3). O

Theorem 9. For n = 2cd and d large enough, the d-reqular graph on n vertices with the most 6-cycles
is ¢ copies of Kqq.

Proof. Since hom(B,G) > 4-hom (K4 \ e, G), we have that the non-constant terms outside of the sum
in (%) are non-positive and thus maximized when they are zero. Note that if G is bipartite, then these
terms are zero. By Lemma 1, the spectral part of (%) is maximized when A\; = ... = A\ = d, Ae41 =
= Xoe = —d, Agcy1 = ... = Ay = 0. Thus the upper bound given by,

maxinj(Cs, G) < max (f(A)) + max (=3 - hom(B,G) + 9 -hom(K4 \ e,G)),
where f()) is the spectral term in (%) is attained. O

As k grows, more non-spectral terms appear and more inequalities between homomorphsim numbers
are needed. As a result, it is hard to come up with a scheme that does this for all k. In fact,
in [4], it was shown that any linear inequality between homomorphism densities, which are defined
using homomorphism numbers, can be shown using a (possibly infinite) number of Cauchy-Schwarz
inequalities. However, deciding whether such an inequality is true is indeterminable. Thus, we introduce
the notion of a non-backtracking, respectively backtracking, homomorphism number and use non-
backtracking spectral theory developed in [1, 2, 3].
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2 Non-backtracking Homomorphisms

A homomorphism ¢ : V(H) — V(G) is a non-backtracking homomorphism if for each vertex v € G,
each neighbor of u has distinct images. That is, ¢ is a non-backtracking homomorphism if

Vu € V(H),Vv,w € N(u),p(v) # o(w).

Denote the number of non-backtracking homomorphisms from H to G as nob(H,G). We see that,
hom(H,G) > nob(H,G) > inj(H,G). We give a relation between these quantities.

Proposition 10. For graphs H,G, we have

nob(H,G) = > inj(H/Q,G),
Q

where Q) ranges over all partitions of G where each part is an independent set with no common neighbors.

Proof. For any partition () and any injective homomorphism of H/Q, we get exactly one non-backtracking
homomorphism of H. It is exactly the one where the vertices v; € H that are in the part of ) repre-
sented by v € H/Q are mapped to the same vertex that v is mapped to in the injective homomorphism.
There are no other non-backtraccking homomorphisms because any partition where some part has a
common neighbor, the resulting homomorphism from H — G will be backtracking. O

Similarly, we can denote bac(H, G) as the number of backtracking homomorphisms from H to G. A
backtracking homomorphsism is a homomorphsism that is not non-backtracking. Clearly, we have,

hom(H, G) = nob(H,G) +bac(H,G) = Y _inj(H/P,G) = bac(H,G) =Y _inj(H/S,G),
P S

where S ranges over partitions of V(H) with common neighbors in some part. Note that a M&bius
inversion relation like in Lemma 4 does not hold. However, if we label the vertices and edges of the
quotients and define neighbors in a way that considers the labeling, then such an inversion holds.

2.1 Maximizing Non-backtracking and Backtracking

We can count the number of closed non-backtracking walks of length k£ of G with the following results
from [1, 2, 3]. In the latter, it was shown that there is a closed form for the non-backtracking spectrum
in terms of the ordinary spectrum of G. Consider the directed graph G = (V, E) where |V| = 2|E],
where each vertex is represented by (u,v) C E. Then, we have E = {(u,v), (z,y) : v = z,u # y}. The
non-backtracking matrix of GG, denoted B, is the adjacency matrix of é, which is given by,

1, ifv=z,u#y

0, otherwise

Bluw),(@y) = {

Note that each distinct directed closed walk of G corresponds to a unique non-backtracking walk of G
of the same length. Thus, the number of closed non-backtracking walks of length k of G is equal to
tr(B*). Furthermore, we have the following result.

Proposition 11. Let G be a d-reqular graph. Then, the eigenvalues of B are

A& /A2 —4(d—-1)
+1

) 2 )

where \; are the eigenvalues of A and +1 each have multiplicity m —n, where m is the number of edges

in G [3].
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In general, by the binomial theorem, the problem of finding the graph with the most non-backtracking
closed walks of length k becomes:

k k
zn: N+ /A2 —4(d—1) N — /A2 —4(d—1)

e 2 + 2
=1

n |k/2] k—2i i n n
Aj (A2 —4(d—1))
=max) | D (m) () o st Y A =0, N =nd, Amax = d, [Xi| < d.

j=1 i=1 i=1 i=1

Note that the objective function above is always real as ¥ + zF = 2% + (2¥) = 2Re(2"). This is a sum
of polynomials with positive leading coefficient and satisfies the assumptions of Lemma 1.

Theorem 12. For odd k, sufficiently large d, and n = c¢(d+ 1), the d-regular graph on n vertices with
the most non-backtracking closed walks of length k is ¢ copies of Kgy1.

For even k, sufficiently large d and n = 2cd, the d-regular graph on n wvertices with the most non-
backtracking closed walks of length k is ¢ copies of Kgqq.

Proof. By Lemma 1, the solution of the optimization problem is the spectrum for these graphs. O

We now find maxg bac(Cy, G). The number of backtracking walks of length k is the sum of those
that backtrack once, those that backtrack twice, thrice, and so on. Denote bac;, i, . i,(Ck, G) as the

number of backtracking homomorphisms that backtrack ¢ = Zﬁ tj times where i; denotes the length
of the jth consecutive backtracking streak. We compute,

n

bac(Cy) = Z Z baci, iy.....i,(Cr) = Z Z hom(Hih_”ﬂ-e):Z Z daz)\?ﬂ"

i=1 i1+...5p=1 i=1 i1+...+ip=1 =1 i1+ =1 j=1

where H;, _;, is C_; with a antennas with a = (# odd length streaks in i1, i2, ..., 4¢). This is maximized
at the desired spectrum by Lemma 1 because every coefficient is positive. Thus, we have the following
result.

Proposition 13. For d sufficiently large, the d-regular graph on n = c(d + 1) vertices with the most
closed backtracking walks of odd length k is ¢ copies of Kgqy1. Similarly, for sufficiently large d, if
n = 2cd and k is even, then the optimal graph is c copies of Kg 4.

Proof. Using the above equation as the objective function with the same constraints as before, by
Lemma 1, gives the spectra of K41, or K4 respectively, as the optimizer. O
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Abstract

The weight spectra (i.e. the lists of all possible weights) of the Reed-Muller codes RM (r,m), of
length 2 and order r, are unknown for r € {3,...,m—>5} (and m large enough). Those of RM (m—
4,m) and RM(m — 3, m) have been determined very recently (but not the weight distributions,
giving the number of codewords of each weight, which seem out of reach). We determine the weight
spectrum of RM(m — 5,m) for every m > 10. We proceed by first determining the weights in
RM(5,10). To do this, we construct functions whose weights are in the set {62, 74,78, 82,86, 90},
and functions whose weights are all the integers between 94 and 2 — 2 = 510 that are congruent
with 2 modulo 4 (those weights that are divisible by 4 are easier to determine and they are indeed
known). This allows us to determine completely the weight spectrum, thanks to the well-known
result due to Kasami, Tokura and Azumi, which precisely determines those codeword weights in
Reed-Muller codes which lie between the minimum distance d and 2.5 times d, and thanks to the
fact the weight spectrum is symmetric with respect to 2°. Then we use this particular weight
spectrum for determining that of RM (m — 5, m), by an induction on m.

This extended abstract is an excerpt of the full paper [3].

1 Introduction

Given 0 < r < m, the Reed-Muller code RM (r,m), of length 2" and order r, is made of all m-variable
Boolean functions f of algebraic degree at most r (or more precisely of the binary vectors of length
2™ that are the lists of values of f(x) when x = (x1,...,zy,) ranges over F3" in some fixed order). All
codeword weights in the Reed-Muller codes of length 2" and orders 0,1,2,m — 2, m — 1, m are known
(as well as the weight distributions of these codes). They are recalled for instance in [7] and in [4].
The low Hamming weights are also known in all Reed-Muller codes: Kasami and Tokura [5] have shown
that, for » > 2, the only Hamming weights in RM (r,m) occurring in the range [2""; 2™ "*1[ are of
the form 2m~"1 — 2m=r+1=¢ where § < max(min(m — r,r), Z=5t2),

Kasami, Tokura and Azumi determined later in [6] all the weights lying between the minimum
distance d = 27" and 2.5 times d. The functions having such weights are characterized in this
reference (all weights are described at pages 392 and following of the reference, and the corresponding
functions are described under some conditions in its Table I).

The weight spectra (i.e., the sets of all possible codeword weights) of the codes RM (r, m) are unknown
for 3 < r < m —5 (and therefore, their weight distributions are also unknown) but they have been
recently determined in [4] for r = m—4, m—3, thanks to the fact that there is a simple way to determine
many weights in RM (r, m) from the weights in RM (r — 1, m — 1); the weight spectra of RM (m —c,m)

*The full version of this work is to appear in IEEE Transactions on Information Theory. It has never been presented
in a conference (only in a local seminar) .This research is supported by the Norwegian Research Council.
fEmail: claude.carlet@gmail.com.
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were then deduced for ¢ = 3,4, thanks to the Kasami-Tokura’s results [5], which allowed to know that
the numbers missing in the obtained lists could not be weights in these codes.

Reference [4] could not address the cases ¢ > 5, mainly because the weights that are not divisible by
4 in RM(5,10) could not be determined. In the present paper, we solve the case ¢ = 5, by constructing
codewords in RM (5,10) achieving all the weights allowed by [6] and all those that are larger than 2.5d
and smaller than 2™~ !, and thanks to an induction on m.

2 Preliminaries

The Hamming weight (in brief, the weight) of a binary vector x = (z1,...,2,) € FY is the size of its
support {i € {1,...,n};z; # 0}. The Hamming distance between two vectors in F% is the weight of
their difference (that is, of their sum). Hence, since m-variable Boolean functions can be identified with
binary vectors of length n = 2", the Hamming weight of an m-variable Boolean function f is the size
of its support {x € F5"; f(x) # 0}, and the Hamming distance between two Boolean functions is the
weight of their sum. A binary linear code of length n is an Fa-subspace of F5. This allows to define its
dimension (as an Fo-vector space). Its minimum distance is the minimum Hamming distance between
distinct codewords, that is (thanks to the linearity of the code) the minimum Hamming weight of the
nonzero codewords.

The set of the codeword weights of a given linear code C will be called the weight spectrum of C,
and for simplicity, we will sometimes write “the weights of C” instead of “the weights of the codewords
in C” for the elements of its weight spectrum. The weight distribution of the code is the list of the
numbers A;, where A; equals the number of codewords of weight i for i € {0,...,n}.

Given two integers m and r € {0,...,m}, the Reed Muller code RM (r,m) of length n = 2™ and
order r is defined in terms of Boolean functions (see [7]): each m-variable Boolean function f : F5* — Fy
admits a unique representation as a polynomial in Folx1, ..., 2]/ (22 + 21,...,22, + 2,,), called the
algebraic normal form (ANF) of f. We choose an order on 5, that is, we write F§* = {P1,P2,..., Py},
and we denote by ev the evaluation map from the space of Boolean functions to Fy by the rule
ev(f) = (f(P1),..., f(Py)). Then RM(r,m) equals {ev(f) | f € By, and deg(f) < r}, where B,, is
the vector space of all m-variable Boolean functions and deg( f), called the algebraic degree of f, is the
(global) degree of the ANF of f. Boolean function f has an odd Hamming weight if and only if it has
(maximal) algebraic degree m.

,
The dimension of RM(r,m) equals > (T) and its minimum distance equals 2*~". The minimum

=0
weight codewords are the indicators of the (m — r)-dimensional affine subspaces of F5*; up to affine
equivalence, they equal []i_; z; (two Boolean functions are called affine equivalent if one equals the
composition of the other by an affine permutation).

The McEliece theorem gives a divisibility lower bound on the weights in RM (r,m):

Theorem 1 (McEliece divisiblity theorem). [8] The weights in RM (r,m) are multiples of L= ],

This bound is tight, as shown in [1]; more precisely, for each pair (r,m), there is at least one codeword

of RM (r,m) with weight equal to 2" times an odd integer.

Another important result on Reed-Muller codes is the following (already evoked in the introduction):

Theorem 2 (Kasami-Tokura). [5] Let w be a weight of some nonzero codeword in RM (r,m) in the
range 2™" < w < 2m"TL Let o = min(r,m — 1), and 8 = m_TT“ The weight w is of the form
w = 2mrHL _gm=rHl=is for i in the range 1 < i < max(a, 3). Conversely, for any such i, there is a
w of that form in the range 2" < w < 2m~TFL

This result has been extended in [6] into the characterization of all the weights of RM (r, m) that are
in the range 2™ < w < 2m "+t 4 2m77=1 (je. that lie between the minimum distance of the code
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and 2.5 times the minimum distance). It is impossible to summarize these results; we shall refer below
to the pages in this reference where the results that we shall need can be found.

Notation: for every n, we denote respectively by 0, and 1, the all-0 and all-1 vectors of length n.

3 The weights of the Reed-Muller codes of length 2" and order m — 5

It is well-known that we obtain all the codewords in RM (r,m) by concatenating any codeword u of
RM (r,m — 1) and the sum of u and of a codeword v of RM (r — 1,m — 1) (this is called the (u,u + v)
construction of RM (r,m), see [7]). If we take w also in RM(r — 1,m — 1), then u and u + v range
freely and independently in RM (r — 1,m — 1). Hence, RM (r,m) contains the concatenations of any
two codewords of RM (r — 1,m — 1) (which can also be seen directly by considering functions of the
form u(x') + 2 v(x’), where v and v are two (m — 1)-variable Boolean functions of algebraic degrees at
most 7 — 1 and x’ € F3"!). This implies that the sums of two weights in RM (r — 1,m — 1) are weights
in RM (r,m). This allowed in [4] to determine the weights of RM (3,6) and RM (4,8) and deduce by
induction the weights of RM(m — ¢, m) when ¢ < 4.

But the weights in RM (m — 5, m) could not be determined. This would have needed to determine
the weights in RM(5,10). Indeed, determining the weights in the codes RM(m — ¢,m) for a given
¢ > 0 needs in practice, for starting an induction, to determine the weights in the code RM (m — ¢, m)

for which m is the smallest such that UZ—:}:J (in the McEliece divisiblity theorem) has value 1, that

is, m = 2c¢ = 2r (in which case the condition i < max(min(m — r,r), 2=+2) of Kasami-Tokura writes

i < ¢). Taking m smaller than 2¢ allows by computing sums of two weights in RM(m — ¢, m) to
obtain only weights that are divisible by 4 in RM(m +1—c¢,m+1). And only a half of the weights of
RM (5,10) could be determined in [4] (almost all weights that are not divisible by 4 missing).

For the reasons presented above, determining the weights in RM (r,2r) that are divisible by 4 is
easier than determining those which are not divisible by 4 (and divisible by 2): many of the former
can be obtained by adding two weights from RM (r — 1,2r — 1) if these weights are known, or from
RM (r — j,2r — j) where j > 1 is the smallest value for which the weights are known. This is how they
have been determined in [4] for RM (5, 10).

Let us then work on the most difficult part: the weights that are not divisible by 4.

3.1 The weights in RM (5,10) that are congruent with 2 mod 4

Since using a computer for obtaining the weight spectrum of RM (5, 10) seems out of reach, we need to
mathematically construct Boolean functions in 10 variables and of algebraic degree at most 5, whose
Hamming weights can be determined and cover as many values allowed by [6] as possible (and are
congruent with 2 mod 4). Of course, we only need to determine the weights up to 2™~ — 2, since
Reed-Muller codes being invariant by the complementation of their codewords to the all-one vector,
their weight spectra are invariant by complement to 2.

We shall use the structure of the so-called Maiorana-McFarland functions (see e.g. [2]). Let m be a
positive integer. An m-variable Boolean function is Maiorana-McFarland if there exist 2 < k < m,
o : IF’Z”*]C > X and g : Fg”*k > Fy such that:

fxy)=x-¢(y) +9(y); xeF5, yeFyF

where (x,y) is the concatenation of the vectors x = (z1,...,z;) and y = (y1,...,Ym—x) and “” is an
inner product in Flg (for instance the so-called usual inner product x - x’ = z12] + - - - + 2}, where of
course X' = (z/,...,x))). We assume k > 2 because for k = 1, the corresponding Maiorana-McFarland

functions are all m-variable Boolean functions, and the Maiorana-McFarland structure is then weak
and does not help the study.
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Such function f belongs to RM (r,m) if and only if ¢ has algebraic degree at most r — 1 (that is, all
its coordinate functions have algebraic degree at most r — 1) and ¢ has algebraic degree at most 7.
Considering the value W(0y, 0,,,—1) of the Walsh transform Wy of function f (see e.g. [2]), we have:

2" — 2wy (f) = Wy(04, ) =
Z (_1)X~¢(y)+g(y) _

x€Fk yeFy—F

Z (_1)g(y)Z(_1)x-¢(y) — ok Z (—=1)9%),

yeFy—Fk x€F% yEo—1(0)

where ¢~1(0) denotes the pre-image by ¢ of the zero vector in Fg . Hence:

w(f) =2""1 =21 N (<)o) (1)
y€H~(0x)
We want this number to be congruent with 2 mod 4, which obliges to take k = 2.

Let ¢1, ¢2 be the two coordinate functions of ¢. We have ¢~1(02) = {y € IF;”_Q; d1(y) = ¢2(y) = 0}.
The indicator function of ¢~1(02) equals then (¢1(y) + 1)(¢2(y) + 1). According to what we recalled
in Section 2, a Boolean function in m — 2 variables has an odd Hamming weight if and only if it has
(maximal) algebraic degree m — 2. Hence, ¢~!(02) has an odd size if and only if ¢1¢2 + ¢1 + ¢2 has
algebraic degree m — 2.

We fix now m = 10 and » =5 (¢ = 5). The fact that ¢;¢, has algebraic degree m — 2 = 8 implies that
¢1 and ¢o both have algebraic degree 4 exactly.

We wish that ¢~1(0y) is as large as possible (then we can try to reach as many weights as possible
with f by visiting as many Boolean functions g as possible). For this, we wish that the co-support of
¢1 (that is, the complement of its support) is as large as possible. We take then for ¢; a minimum
weight codeword in RM (4,8). Up to affine equivalence, we can take ¢1(y) = H§:1 y; (see [7, 2]). This
#1 being chosen, we want that ¢1¢o has the algebraic degree 8 and that ¢~1(03) has a maximum size.
Let us then take ¢o(y) = H?:s Yj-

3.1.1 The weights achievable by f when m =10, k = 2, ¢1(y) = H§:1 y; and ¢2(y) = H?:5 Yj

With such choices, we have:

4 8
¢~1(02) = {y e [Jwi=11vi= 0}
j=1 j=5
= (F3\ {14}) x (F3\ {14}).

Then, according to (1), denoting by ¢’ the restriction of g to (F3 \ {14})2, by g1 the restriction of g
to {14} x F3 and by go the restriction of g to F§ x {14}, we have:

wn(f) = -2 3 (-1

ye(F3\(14})?
= 29 2(152 - 2wH(g’)>
62 + dwg (g') (2)

62 + 4wy (g) — 4wg(g1) — dwr(g2) + 4 g(1g).

The detailed explanations on how we obtained all the possible weights of ¢’ when ¢ belongs to
RM (5,8) can be found at URL:
https://d197for5662m48. cloudfront .net/documents/publicationstatus/171039/preprint_pdf/
5e3b1a34b6£649e6b532796b16033485 . pdf
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The weights congruent with 2 mod 4 between 62 and 94 Considering the case where g has
minimum nonzero weight 8 (i.e. ¢ is the indicator of a 3-dimensional affine space A), and considering
all possible cases, we have:

Lemma 3. Let: A .
fy)=a [Juy+a2[Jui+90v); xe€F3 yels,
j=1 j=5
where g is any minimum weight codeword in RM(5,8). Then the set of weights of such codewords of

RM (5,10) includes {62,74,78,82,86,90,94} and covers all the weights in RM (5,10) that are congruent
with 2 modulo 4 and between 62 and 9.

The weights congruent with 2 mod 4 between 96 and 126 Choosing now for g a codeword of
RM (5, 8) having the three weights that come immediately after 8 when visiting the weight spectrum
in ascending order, that is 16 —4 = 12, 16 — 2 = 14 and 16 itself, we obtain:

Lemma 4. Let f be defined as in Lemma 3, where g is the sum of two minimum weight codewords in
RM (5,8). Then the set of weights of such codewords of RM(5,10) includes additionally to Lemma 3,
the numbers: 98,102,106,110,114,118,122,126, and covers then all the weights in RM (5,10) that are
congruent with 2 modulo 4 and which lie between 98 and 126.

The weights congruent with 2 mod 4 between 130 and 226 We now need to take a function
g such that the weight w of ¢’ is between 17 and 41. We have:

Lemma 5. Let f be defined as in Lemma 3, where g is the sum of three to six minimum weight
codewords in RM (5,8) with disjoint supports. Then the set of weights of such codewords of RM (5,10)
includes additionally to Lemmas 8 and 4, all the numbers congruent with 2 modulo 4 and lying between
130 and 226.

All remaining weights congruent with 2 mod 4

Lemma 6. Let g be the 8-variable Maiorana-McFarland function:
9(z,t) =z 9(t) + h(t); 2t €Ty,

where 1 is any function from F3 to F3 and h is any Boolean function over Fs. Let:

4 4
feozt) =2 [[(z+ 1)+ [+ 1) + 9(z,t);
j=1 j=1
X € IFQ, z,t € Fg.
Then the algebraic degree of any such 10-variable Boolean function f is at most 5 and the set of the

weights of such functions includes all those integers between 230 and 510 that are congruent with 2
modulo 4.

3.2 The weight spectrum of RM(5,10)

Proposition 7. The set of all weights in RM(5,10) equals {0, 32,48, 56, 60, 62,
64,68, 72 + 24,210 — 68,210 — 64,210 — 62,210 — 60, 210 — 56, 210 — 48 210 — 32 210} " where i ranges over
the set of consecutive integers from 0 to 29 — 72.

Proof. The result is deduced from Lemmas 3,4,5,6, the results of [5], and the facts that the spectrum
is symmetric with respect to 512 and that, according to [4], all the numbers divisible by 4 between 56
and 2'9 — 56 = 968 are weights in RM (5, 10). O
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3.3

Theorem 8. For everym > 10, the set of all weights in RM (m—>5,m) equals {0, 32, 48, 56, 60, 62, 64, 68, 72+

The weight spectrum of every code RM(m — 5,m) for m > 10

20,2™ — 68,2™ — 64,2™ — 62,2™ — 60,2™ — 56,2™ — 48,2™ — 32,2™}  where i ranges over the set of
consecutive integers from 0 to 2™~ — 72,

The proof by an induction on m > 10 is omitted because of length limitation.

Open question: Let ¢ be any positive integer. For m > 2c¢, is the weight spectrum of RM(m — c¢,m) of

the

form:

{0 UAUBUCUBUAU{2™}?

where:

o A C[2¢2¢M1] is given by Kasami and Tokura [5],
o B C[2¢tL 2¢tl 4 2¢71) i given by Kasami, Tokura, and Azumi in [6, Page 392 and foll.],
o C C[2¢+ 4 2¢71 gm _getl _9¢=11 " consists of all consecutive even integers,

o A stands for the complement to 2™ of A, and B stands for the complement to 2™ of B.
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Abstract

A separating system of graph G is a family J of subgraphs of G such that, for all distinct edges
e, f € E(G), some element in F contains e but not f. Recently, it has been shown that every
n-vertex graph admits a separating system of paths of size O(n) [Separating the edges of a graph
by a linear number of paths, M. Bonamy, F. Botler, F. Dross, T. Naia, J. Skokan. Advances in
Combinatorics, October 2023]. This result improved an almost linear bound of O(nlog*n) found
by Letzter in 2022, and settled a conjecture independently posed by Balogh, Csaba, Martin, and
Pluhéar and by Falgas-Ravry, Kittipassorn, Korandi, Letzter, and Narayanan. We extend this result,
showing that every n-vertex graph admits a separating system consisting of O(n) edges and cycles.

1 Introduction

Given a set Q and a family F € 2 of subsets of §, we say that F separates € if for all distinct w, p € Q
there exist A, A, € F such that A, N{w,p} = {w} and A, N {w, p} = {p}. The study of separating
systems dates back to the work of Rényi in 1961 [9]. The particular setting where = E(G) is the
edge set of a graph G and only certain subgraphs are allowed in F has also been investigated multiple
times in the Computer Science literature, in the context of fault detection in networks (see, e.g., [5, 6]
and the references therein). A generic problem in the area is the following.

Question 1. Let G be a (possibly infinite) family of graphs, and let H be an n-vertex graph. What is
the smallest size of a collection F C G of H-subgraphs such that {E(H) : H € F} separates E(H)?

A separating system of a graph G is a collection of G-subgraphs such that their edge sets sepa-
rate F(G). Recently, Bonamy, Dross, Skokan and the two authors showed that every n-vertex graph ad-
mits a separating system consisting of at most 19n paths [2], improving a previous bound of O(nlog* n)
found by Letzter in 2022 [7], and settling a conjecture independently posed by Balogh, Csaba, Martin,
and Pluhér [1] and by Falgas-Ravry, Kittipassorn, Korandi, Letzter, and Narayanan [4].

A natural follow-up question is to ask whether every graph G admits a cycle separating system of
size O(|V(G)]), that is, a collection of cycles and edges of G’ which separate E(G). (Note that cycles
alone are not enough in general, since G might contain a cycle-free component.) This question was
independently posed by Girdo and Pavez-Signé!. Here we answer their question in the affirmative.

*This research has been partially supported by Coordenagao de Aperfeicoamento de Pessoal de Nivel Superior — Brazil —
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T. Naia was partially supported by the Grant PID2020-113082GB-100 funded by MICIU/AEI/10.13039/501100011033.
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!Personal communication.
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Theorem 2. FEvery graph on n vertices admits a separating cycle system of size 41n.

Note that any cycle separating system of K, contains at least (n — 1)/2 elements, since each of
the (g) edges must be covered and any cycle contains at most n edges, so the bound in Theorem 2
is optimal apart from the leading constant. We do not believe that 41 is the correct multiplicative
constant, and we wonder whether every graph of order n admits a separating cycle system of order
n+o(n).

Our proof uses a combination of properties of Pdsa’s rotation-extension method, a covering result
due to Pyber, combined with algebraically-constructed edge covers of Hamiltonian graphs.

1.1 Pésa rotation-extension.

Given a graph G and S C V(G), we denote by N¢(S) the set of vertices in V(G) \ S which are adjacent
(in G) to some vertex in S. We omit subscripts when clear from the context. Let P = u---v be a
path from u to v. If x € V(P) is a neighbor of u in G and =~ is the vertex preceding x in P, then
P' =P —zx~ +ux is a path in G for which V(P’) = V(P). We say that P’ has been obtained from P
by an elementary exchange fixing v (see Figure 1). A path obtained from P by a (possibly empty)
sequence of elementary exchanges fixing v is said to be a path derived from P. The set of endvertices
of paths derived from P distinct from v is denoted by S, (P). Since all paths derived from P have the
same vertex set as P, we have S,(P) C V(P). When P is a longest path ending at v, we obtain the
following (for a proof see [2]).

Figure 1: a path (highlighted) obtained by an elementary exchange fixing v.

Lemma 3 ([3]). If P=u---v is a longest path of a graph G, then |[Na(S)| < 2[Su(P)|.
We also use the following property of Pésa rotations.

Lemma 4. If P = u---v be a longest path of a graph G and S = S,(P), then G contains a subgraph C
which is either and edge or a cycle and moreover S UN(S) C C.

Proof. Consider the vertex z € V(P) N N(S) which lies closest to v in P, and let P' = «’---v be a
path obtained from P by elementary exchanges fixing v so that P’ starts with a neighbor u’ of z. Note
that C is an edge when S = {u} and |N(S)| = 1. Since the section P[z,v] of P from z to v intersects
SUN(S) precisely in v, and P’ Uw'z has at most one cycle, we conclude that C' = (P’ +uv)\ E(P[w,v])
is either an edge or a cycle that contains S U N(S5) O

2 Separating into cycles

For the sake of clarity, we make no attempt to optimize multiplicative constants in the argument. This
allows us to better highlight its main ideas. It also seems unlikely that the optimal multiplicative
constant can be reached by this approach alone.

The following theorem of Pyber is useful in our proof.

Theorem 5 (Pyber [8]). Every graph G contains |V (G)| — 1 cycles and edges covering E(G).

Given a graph G, a collection J of subgraphs of G, and e, f € E(G), we say that J separates e
from f if there exists J € J such that E(J) N{e, f} = {e}. Similarly, given &, F C E(G), we say that
J separates € from F if J separates e from f for all distinct e € € and f € F.
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Proof of Theorem 2. We proceed by induction on n. Let G be a graph with n vertices. If G is empty,
the result trivially holds. Let P = u---v be a longest path of G and let S = S,(P). By Lemma 4,
there exists C' C G which is either an edge or a cycle and which contains S U N(S5).

Let H be the subgraph of G induced by the edges incident to at least a vertex in S, let h = |V (H)|,
and let G' =G\ S. Then G = HUG' and V(H) = SUN(S), so h < 3|S| by Lemma 3.

Note that S is not empty (because G is not empty). By the induction hypothesis, there is a cycle
separating system €' of G’ of size at most 41(n — |S|). Note that €’ separates E(G’) from E(H).
In what follows, we construct a set C of at most 41|S| edges and cycles which separates E(H) from
E(G), i.e., separates edges in H and also separates E(H ) from E(G’). This set C is the union of three
collections of cycles and edges (D, € and H) which we next define.

Let D be a collection of at most h —1 < 3|S| —1 edges and cycles which covers E(H)\ E(C) (such D
exists by Lemma 5), and let € = E(C) N E(H) be the collection of edges of C' which contain a vertex
in S. Note that |€| < 2|5], and that € separates the edges of E(C)NE(H) among themselves and from
all other edges of G. Moreover, D separates the edges of E(H) \ E(C) from all other edges. The final
component of € will separate the edges of E(H) \ E(C) from one another.

Note that every edge in E(H) \ E(C) has both endvertices in V(H) = S U N(S). Let vy,...,v
denote the vertices in V' (H), labeled following the cyclic order in which they appear in C. From this
point onward, whenever we refer to an edge v;v;, we will always assume that ¢ < j. We say that edges
v;v; and v,vg cross each other if either i < r < j < sorr <i < s < j. For given integers k and /,
consider the two matchings

My, = {viv; € E(H)\ E(C):j — i=k}
Ny = {’Ui’Uj GE(H)\E(C) :j—2i:€}

Note that at most 3h < 9|S| of these matchings are nonempty, because My, is empty whenever k < 2
or k> h—1, and Ny is empty if { < —h +2 or £ > h — 2. We claim that the nonempty matchings
separate the edges in E(H)\ E(C). Pick two edges v;v; and v,vs. If j —i # s —r, then M;_; separates
v;v; from v,.vs and, moreover, M,_, separates v,vs from v;v;. Similarly, if j — 27 # s — 27, then N;_o;
separates v;v; from v,vs and Ny_o, separates v,vs from v;v;. Finally, it is easy to check that j—i = s—r
and 1 —2j = s — 2r if and only if ¢ = r and j = s, that is, if and only if v;v; = v,v5. We conclude that
every pair of distinct edges in E(H) \ E(C) is separated by these matchings.

To construct H we shall cover each nonempty M}, (respectively, Ny) using at most 4 cycles in M UC
(respectively, Ny, U C') each. A trivial yet crucial observation we shall use here is that if M C M;
(or M C Ny) is a set of pairwise crossing edges and |M| is odd, then M U C contains a cycle which

covers M (see Figure 2). More generally, if M admits a partition |, S&M) such that

(i) each S&M) is formed by odd number of pairwise crossing edges, and

)

(1) each pair of distinct edges v;v; € SéM) and v,vs € SéM cross if and only if a = 33,

then M U C contains a cycle which covers M (see Figure 2).

=< >

v V2 V3 V4 VU5 Vg Ur Vg Vg V10 V11 V12 V13 Vi4 V15 Vie Vit V18 V19

Figure 2: A cycle covering an odd number of pairwise crossing edges (vovg, v4v11 and vgvys).

Indeed, it turns out that each of the matchings M} and N, admits a 4-piece partition such that each
part satisfies both (i) and (). Consequently, each nonempty M}, and each N, can be covered by at
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most four cycles using only edges in the matching and in C. The required partitions will be obtained
by splitting each matching into two, twice. Given positive integers u, let f(u) be the largest integer
such that 29(¢ + 1) — ¢ < u. For all k, all £ and all = € {0, 1}, put

My ={vivj € E(H)\ E(C): |i/k] =7 (mod 2)}
Nir={viv; e E(H)\ E(C): f(i)=n (mod 2)}.

Let M be an arbitrary My, . or Ny .. We claim that M admits a partition (J,, S((XM) such that distinct
edges of M cross if and only if they belong to the same part.

Proof of claim (partition of M;m). We begin with the case M = Mj, . Let v;v; and v,v, be distinct
edges in M}, .. Without loss of generality, we assume ¢ < r. By definition, j = ¢+ k and s = r + k.
Since |i/k| and |r/k] have the same parity, then either |i/k]| = |r/k]| or |r/k] — |i/k] > 2. In the

former case, we ha\/e lhal
k k />

so v;v; and v,vs cross, while in the latter they do not, since
j=i+k<(li/k] +)k+k<([r/k] —1)k+k<r

Hence the crossing relation defines equivalence classes among the edges in M}, ., and thus the a partition
of M satisfying (i) exists.

Proof of claim (partition of Ny ). The case M = Ny is similar. Consider distinct v;vjy and v, vy
in Ny, where without loss of generality we assume ¢ < /. By definition, either f(i) = f(r’) or
f(r") = f(i') = 2. In the former case vyv; and v vy must cross, since

' <20 (1) =2 ) e <2(2F O r ) ) e <2 0=
On the other hand, if f(r') — f(i') > 2, then
j =20+ 0<22F O 0+ 1) —0) + < 2P0 4 1) — 0 <2041y e <,

and consequently vyv; and v.vy do not cross. As before we conclude that M admits a partition

Ua S which satisfies (i3).

Returning to the proof of the theorem, we complete our partitioning by refining each one of the
nonempty matchings Mj, , and Ny, (for each k, ¢ and m) further into two pieces each, so that any
matching after the refinement also satisfies (i) (note that partition refinement does not break (ii)).
More precisely, by (ii), M}y has a natural partition (J, S&M’“’") into equivalence classes such that
edges in the same class are pairwise crossing and edges in distinct classes do not cross. Form Ml%m
by selecting arbitrarily one edge from each even-sized equivalence class, and let M,fm = M~ \ Ml%nr
be the remaining edges of M, (i.e., M,im contains at most one edge from each equivalence class, and
M ,3’” contains an odd number of edges from each equivalence class). We use the same criterion for
partitioning Ny . into Ngl’7r U N£2,7r'

Note that each part resulting from this refinement satisfies both (i) and (7i). It follows that there
exists a collection H of at most 4 - 9|.S| = 36|.S| cycles such that each nonempty Mj, (respectively, Ny)
is covered by a at most 4 cycles in My, U E(C') (respectively, Ny U E(C')), as desired.

Note that H separates the edges in E(H) \ E(C) from E(G), and contains at most 36|S| elements.
Since |€] < 2|S] and |D]| < 3|S|, we have that € = DUEUFH has at most 41|S| edges and paths. Hence,
€' UC is a cycle separating system of G with cardinality at most 41(n — [S|) + 41|S| = 41n as desired.
This completes the proof. ]
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3 Concluding remarks

In this article, we have shown that every n-vertex graph admits a separating system consisting of O(n)
edges and cycles (which we call cycle separating systems for short). This is, in at least two ways,
a natural extension of previous results about the existence of path separating systems. On the one
hand, a cycle separating system immediately yields a path separating system (obtained by breaking
each cycle into two paths). On the hand, since paths and cycles are, respectively, subdivisions of Kj
and K3, the following question immediately suggests itself.

Question 6. Is it true that for every natural ¢t > 2, every n-vertex graph admits a separating system
consisting of Oy(n) edges and subdivisions of K;?

Note that edges are necessary in the separating systems in Question 6, because a union of disjoint
K1 cliques has linearly many edges and no K; subdivision. This follows in more generality from
a classical result of Mader, stating that for every t there exists f(¢) such that every graph free of a
K, subdivision has average degree at most f(t).

Our Theorem 2 and the results in [2] confirm the conjecture for ¢ < 3. In a forthcoming article,
the authors extend this for t = 4 as well, but to the best of our knowledge no further cases have been
settled.
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The algorithmic Fried Potato Problem in two dimensions*
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Abstract

Conway’s Fried Potato Problem seeks to determine the best way to cut a convex body in n parts
by n — 1 hyperplane cuts (with the restriction that the i-th cut only divides in two one of the parts
obtained so far), in a way as to minimize the maxuimum of the inradii of the parts. It was shown by
Bezdek and Bezdek that the solution is always attained by n — 1 parallel cuts. But the algorithmic
problem of finding the best direction for these parallel cuts remains.

In this note we show that for a convex m-gon P, this direction (and hence the cuts themselves)
can be found in time O(mlog4 m), which improves on a quadratic algorithm proposed by Carnete-
Ferndndez-Marquez (DMD 2022). Our algorithm first preprocesses what we call the dome (closely
related to the medial axis) of P using a variant of the Dobkin-Kirkpatrick hierarchy, so that linear
programs in the dome and in slices of it can be solved in polylogarithmic time.

1 From fried potatoes to baker’s potatoes

Conway’s fried potato problem is stated in [2] (problem C1) as follows: “In order to fry it as expedi-
tiously as possible Conway wishes to slice a given convex potato into n pieces by n — 1 successive plane
cuts (just one piece being divided by each cut) so as to minimize the greatest inradius of the pieces.”

The problem was solved by A. Bezdek and K. Bezdek [1] who showed that, no matter what convex
potato you start with, the best solution is to cut it with n — 1 parallel and equally spaced hyperplanes.
Let us formalize this a little bit:

Definition 1. Let C C R? be a convex body (that is, a compact convex subset with nonempty interior).

1. The directional width of C C R? in a direction v € S*! is the distance between two parallel
supporting hyperplanes of C' with normal vector v:

width, (C) = max v’z — minv” z.
zeC zeC

The width of C is its minimum directional width:

width(C) = min width,(C).
vesSd-1
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2. The inner parallel body of C at a distance p > 0 [8, p. 134] is the set of points of C' that are
centers of balls of radius p contained in C.

inn,(C) ={x € C: B(z,p) C C}.
The p-rounded body C? is the union of all closed p-balls contained in C':

Cr = U B(zx,p).

z€inn, (C)

3. The inradius I(C) of C' is the mazximum radius of a ball contained in C. Equivalently, it is the
mazimum p for which inn,(C) # 0.

Observe that C* = inn,(C) + B(0, p). Also if C = {z € R?: Az < b} is a polyhedron with ||4;]| = 1
for each 4, then inn,(C) = {z € R?: Az < b — p}, where b — p is shorthand for (by — p,..., by — p).
The statement and solution of Conways’s fried potato problem can now be stated as follows:

Theorem 2 (Bezdek-Bezdek [1]). Let C be a convex body in R? and n € N. Let P be a division of

C into n subsets C,...,C, given by n — 1 successive hyperplane cuts. These cuts of P do not extend
beyond previously made cuts, therefore (n — 1) cuts produce n pieces.
Then,

max I(C;) > p,
1€[n]

where p > 0 is the unique number satisfying
width(C?) = 2np. (1)

Furthermore, equality holds for the division of C' given by n—1 parallel and equally spaced hyperplanes
normal to the direction attaining width(C?).

The solution to the fried potato problem raises the algorithmic question of how to find p, v and the
cuts in the statement. We suggest calling this the baker’s potato problem.

Clearly, the difficult part is to find p and the direction v € S¢~! such that width,(C?) = width(C?).
Canete, Fernandez and Marquez [3, 4] have proposed a quadratic algorithm to do this for a convex
polygon in the plane. We here describe a quasi-linear one:

Theorem 3. Let P = {x € R?: Az < b} be a polygon with non-empty interior, where A € Ry,x2 and
b€ R™. We can compute the p of Theorem 2 and a direction v € S? satisfying width,(P?) = 2np in
O(mlog*m) time.

2 The Dobkin-Kirkpatrick hyerarchy

Equation 1 suggests to formalize the Baker’s potato problem adding one dimension to it. If, for a given
convex body C € R?, we define

C ={(x,t) e R x [0,00) : & € C*} C R},

the problem to solve is to find the p such that width(C' N {t = p}) = 2np.

We solve this using the Dobkin-Kirkpartrick hierarchy, which allows to do linear programming queries
in a 3-dimensional polytope in logarithmic type per query. The classical version (which we do not use
but state for completeness) is the following statement in which an extreme-point query in a set .S of m
points has as input a linear functional ¢ € R® and as output the point p (or one of the points) of S
maximizing ¢’ p.

!Baker’s potatoes (pommes boulangére in French and patatas panaderas in Spanish) are potatoes cut in parallel slices
of 2-3 mm. and cooked in the oven.
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Theorem 4 (Dobkin-Kirkpatrick Hierarchy [5, 6], see also [7, Theorem 7.10.4]). After O(mlog®m)
time and space preprocessing, extreme-point queries in 3 dimensions can be solved in O(logm) time
each.

The version we need works in the dual. In what follows we will assume that the facet hyperplanes in
our polytopes are generic, that is, no d + 1 of them have a common point. This implies the polytopes
to be simple and is not a loss of generality since it can be achieved by a symbolic perturbation of the
input matrix.

Definition 5. Let A € R™*? b € R™ be the half-space description of a polytope P in RY. We call
Dobkin-Kirkpatrick hierarchy on P a data structure consisting of:

1. The face poset of P, in which each face F' of codimension k is represented by the subset of size k
of [m] consisting of facets containing F'.

2. A stratification of the set [m] as
m|=Ip > DD

with the property that the facets labelled by each I; \ Ij11 are independent (i.e., mutually non-
adjacent) in the polytope Py defined by the inequalities I;.

3. For each vertex x of each P11 the following information: either the fact that x is still a vertex
in Py or the label of the unique facet inequality of P, that is violated at x.

We call k the depth of the hierarchy and |I| the core size.

Observe that in part (3) uniqueness of the facet follows from the fact that the facets labelled by
I\ I;+1 are independent in P,.

Lemma 6. Let P = {x € R® : Az < b} be a bounded 3-polyhedron defined by A € R™*3, b € R™.
Then, a Dobkin-Kirkpatrick hierarchy on P of depth O(mlogm) and base size O(1) can be computed
in time O(logm).

Proof. First, it is well-known that the face poset of a 3-polytope can be fully computed in the way we
require in time O(mlogm).

Let I = [m] be the row indices of A. Let I’ be a subset of [m] of size at most six and that defines a
bounded polyhedron. This is, {x € R3 : A;x < b; Vi € I'} is a bounded set. 2

We now define the subsets I = Iy, [1,..., I of I in the following recursive manner: Given [;, we
compute the face poset of the polyhedron P, defined by the rows of Ax < b with indices in I;. We then
compute a coloring of the facets of P; with at most 6 colors, which can be done in linear time because
the dual graph of P is planar, so that the graph and all its subgraphs contain vertices of degree at
most 5.

We choose a color C' C I; with

1
NI = G\ T

and let I;,1 = I; \ C. Eventually we reach an I with I = I, hence |I;| < 6 = O(1). Since each time
we remove at least 1/6th of the original inequalities (not in I'), |I;| < |I'| + [(%)IHO \ I'|]. Thus, we

2Such an I’, of size at most 2d, can be found in any facet-described d-polytope as follows: by inductive hypothesis
assume that you know how to find such facets in polytopes of dimension smaller than d. To find them for P, start with
any facet of P, say I, and solve the linear program min A7z on P. If the program has a unique minimum (a vertex)
then let I’ be the original facet plus the d containing that vertex. If the program is minimized at a face F' of dimension
0 < d < d, then let I’ equal the original facet plus the d — d’ containing F' plus the at most 2d’ that you can find by
recursion. This gives 1 +d +d’ < 2d.

To find the facets, in the worst case you need to solve d linear programs in dimension < d, which can be done on O(m)
time (with a hidden constant depending on d).
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have at most logs (m) + 1 steps in the hierarchy, so k € O(logm). The whole computation needs time
proportional to

=0
k
< log(m) Z || <
=0
k
< log(m) (6 + 2(5/6)%) <
=0

<log(m) (6 +6m)) < O(mlogm).

At each step we can easily identify which vertices appear and disappear, and what facet of I; is
violated at each new vertex. When doing this each facet is only considered at one of the levels (the
one in which it dissappears) and the total number of vertices in all layers is linear, since the sizes of
the polytopes in the layers are bounded by a geometric sequence of ratio 5/6. O

Lemma 7. Let P be a facet-described polytope and P’ be a section of P obtained by intersecting with
a linear system of independent inequalities. Then, any Dobkin-Kirkpatrick hierarchy on P is also a
Dobkin-Kirkpatrick hierarchy on P'.

Proof. By induction on dim P — dim P’ it is enough to consider the case dim P — dim P’ = 1, so that
P’ is obtained from P by adding one inequality, that is, intersecting with a hyperplane H.

The first observation is that of a set of facets are mutually non-adjacent on P; then they are also
mutually non-adjacent on P/ := P, N H, so the stratification of [m] in the hyerarchy of P works also
in P’. We need only to show how the hierarchy on P allows to find the information of which facets
remove which vertices on P’. For this, observe that a vertex x of a P/ is an edge of the corresponding
P,. Let u and v be the end-points of that edge. Then,  can only be eliminated by the facet of P/ 1
that eliminates one (or both) of u and v in Py, and this can be checked in logarithmic time (the time
needed to find the vertices u and v). 0

Theorem 8. Let P be a d-polytope with m facets and suppose that we have a Dobkin-Kirkpatrick hyer-
archy on P of depth k and base O(1). Then, a linear program on P can be solved in time O(k?logm).

Proof. In order to solve the linear program with objective function ¢’ « we traverse the hierarchy in

reverse. In the last polytope Py we need constant time since it has at most O(1) facets. Once we have
the maximizer zj, | in P41 we find the maximizer in P; as follows: if zj, | isin B (that is, if it satisfies
the inequalities with indices in [; \ I;;1) then we set z; = x], ;.

If zj,; is not in P then by construction of the hierarchy, there is a unique inequality in I; \ [j41
violated by z;, ; (this is because no two facets indexed by I; \ I;;1 are adjacent in F}). We solve the
linear program on that facet to find zj, ;. By inductive hypothesis this step requires O(k:d_1 logm),
and we need to do this at most k£ times. Ol

Corollary 9. Any facet described 3-polytope with m facets can be preprocessed in time O(mlogm) so
that linear programs on P can be solved in time O(log4 m) and linear programs on planar sections of
it in time O(log® m)

3 Proof of Theorem 3

Without loss of generality let us assume ||A4;|| = 1 for every i. We also assume that the given description
of P isirredundant (every row of A is a facet), which we can check with a (dual) convex hull computation
in O(mlogm) time.
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We want to compute the value p > 0 for which
width(P?) = 2np.
Since PP = inn,(P) + B(0, p), we have that
width(P?) = width(inn,(P)) + 2p.
Hence, by definition of width, the p and v we are looking for must satisfy:

min (width, (inn,(P)) —2(n —1)p) = 0.
veS?

The direction minimizing width in the polygon inn,(P) is normal to an edge of innp(P),3 hence to
an edge of P. Thus, we do not need to check for all v, only those normal to edges of P. We use the
outwards normals without loss of generality; that is, v must be a row of A.

Now let > 0 be the inradius of P; observe that 0 < p < r. For each i € [m], let f; : [0,7] — R be
defined as

fi(t) = widthy, (inng(P)) — 2(n — 1)t,

so that the equation that characterizes p is:

min f;(p) = 0. (2)
i€[m]

Each f; is well defined (as inn;(P) is not empty for 0 < ¢ < r), continuous, piece-wise linear, and
monotonically decreasing. At t = 0 every f; is positive and at t = r some f; is negative because the
width of inn,(P) is 0 in some direction.

Then, (2) implies that p is exactly:

p=min{0 <t <r:3ie[m]: fi(t)=0}.

Indeed, some f; is guaranteed to have a root by continuity, and p is a root for some f;. If p were not
the minimum root, then some other root is smaller and by the f; being strictly decreasing, some f; is
negative at p.

So, in order to find p we need only to compute the minimum of the roots of the f;. This is not
trivial, since the definition of each f; is quite implicit. However we need not verify all of them. For
each i € [m], let M; be the maximum ¢ such that A;z < b — ¢t still defines an edge of inn;(P). Then,
for ¢t > M; the minimum width of inn;(P) cannot be attained at the direction A;, since it needs to be
attained at the normal to an edge of inns(P). Thus,

p=min{0 <t <r:3ie[ml: fi(t)=0,t; < M}.
Equivalently, by continuity and monotonicity,
p=min{0 <t <r:3ie[m]: fi(t)=0,fi;(M;) <0}

We claim that (after preprocessing), we can compute each M; in polylogarithmic time. For this,
consider the following three-dimensional polytope that we call the dome of P:

P:={(z,y,t) eR®: Az <b—t,t > 0}.

That is, PN {t = 0} equals P and, apart from the horizontal facet, P has a facet with normal
(A;,1) € R? for each i € [m]. Assume that we have preprocessed P as required in Corollary 9. The

3A version of this is true in any dimension: by the Karush-Kuhn-Tucker conditions, the v minimizing width in any
polytope must be the common normal to two faces of P with sum of dimensions > d — 1.

57



Discrete Mathematics Days, Alcald de Henares, July 3-5, 2024

value M; equals the maximum of the ¢ coordinate of the i-th facet of P and, by the corollary, it can be
computed in time O(log®m).

Thus, we can compute all the M; in time O(mlog® m). Once this is done we evaluate all f;(M;) also
in total time O(mlog3 m) by solving the linear programs with objective functions A; in the horizontal
slices P := P N {t = M;} of the dome.

The motivation for adding the restrictions ¢; < M; is that in this range the functions f; are easier to
compute. Recall that

(t) = ATy — in ATx — (2n — 2)t.
filt) = max Ajwz— min A;z-—(2n-2)

Now, in the range 0 <t < M; we have

max Alx =b; —t,
r:Ar<b—t
So we can rewrite
fi(t) =b; — x:,g[;ligrll)—t Afz — (2n — 1)t = x:}‘g%%_t (bi — ATz — (2n — 1)t).
We want to solve f;(t) =0, for 0 <t < M; and f;(M;) < 0. Equivalently, we want the unique ¢ such
that:
0= max (bj— ATz — (2n — 1)t) .

r:Ar<b—t
This is the same as finding;:
ar ma ma. b; — ATz — (2n — 1)1).
& tiOStSXML‘ m:Amg)lfft ( ¢ v ( ) )

AT2>b;—(2n—1)t

This is a linear program on the dome, except we have an extra constraint A7z > b; — (2n — 1)t. In
order to solve it we solve it first without the constraint. If the optimum satisfies the extra constraint
we are done, and if not the optimum we want is obtained solving the linear program in the section
PN {ATz > b; — (2n — 1)t}. So, this linear program is solved in time O(log* m). The minimum of the
solutions of these programs for the different choices of i is the value of p we are looking for.
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Abstract

We show that in any two-coloring of the plane, there exists a monochromatic congruent copy of
any arithmetic progression of length 3. This problem lies at the intersection of two longstanding
but active research projects. The first is the study of Ramsey problems for arithmetic progressions
in colorings of euclidean space, for which there are many results dating back over 50 years, but
about which much is still not known. The second is centered around a conjecture of Erdds, Graham,
Montgomery, Rothschild, Spencer and Straus, which posits that any two-coloring of the plane must
contain a monochromatic congruent copy of every non-equilateral three-point configuration. Our
result confirms one of the most natural open cases of this conjecture.

1 Introduction

We let E™ denote n-dimensional Euclidean space, that is, E™ equipped with the Euclidean norm. The
field of Euclidean Ramsey theory is concerned with what types of configurations (monochromatic,
rainbow, etc.) must exist in any coloring of E™ using a prescribed number of colors. One of the most
commonly studied configurations is denoted ¢,,, and consists of m collinear points with consecutive
points at distance 1 apart. In other words, ¢, is an m-term arithmetic progression with common
difference 1. Our main result is the following.

Theorem 1. In any two-coloring of B2, there exists a monochromatic congruent copy of l3.

Thus, by scaling, there naturally exists a monochromatic 3-term arithmetic progression with any
common difference. The classical question in this area, known as the Hadwiger-Nelson (HN) problem,
is one of the most famous open problems in combinatorics. The HN problem, first discussed by
Nelson (not in print) in 1950, asks how many colors one would need to color E? so that there is no
monochromatic copy of £s; i.e. two points of unit distance apart. This quantity is known sometimes as
the chromatic number x(IE?) of the plane. It was known that the answer is between 4 and 7 for a long
time, and a 2018 breakthrough by de Grey [7] showed that one needs at least 5 colors. In general, it is
known that (1.239 + o(1))" < x(E™) < (34 0(1))™ as n — oo [12, Section 11.1].

After the introduction of the HN problem, the area was further developed by Erdés, Graham, Mont-
gomery, Rothschild, Spencer, and Straus in a series of papers [8, 9, 10]. In these papers, they ask if,
for any non-equilateral three-point configuration K, there must be a monochromatic congruent copy
of K in any 2-coloring of E2. The conjecture was confirmed when the coloring is assumed to be polyg-
onal [14], but it is still widely open in general. As noted in [2, Section 6.3], Theorem 1 gives perhaps

*The full version of this work can be found in [6] and will be published elsewhere.
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the most natural open case of this conjecture. This problem was discussed as well in the concluding
remarks of a very recent paper of Fithrer and Té6th [11, Page 12].

To discuss further known results, we introduce some standard notation. If we have configurations
Ki,...,K, in E", we say that E" — (K,..., K,) if, for any coloring of E" with r colors, there exists
a monochromatic (congruent) copy of K; in color i, for some i. If there exists a coloring where this
does not hold, we say E" 4 (Ki,..., K,). For simplicity, if K; = K for all i and E" — (K,..., K})
or B" £ (K, ..., K,), we say simply E* = K (resp. E" /4 K).

Using the above terminology, our Theorem 1 says that [E? 2 l3. The question of for which
n,r,81,...,8 we have E" — ({s,,...,0s, ) also has a rich history, so we collect here the known re-

sults. Perhaps the most relevant results to this manuscript are that E? 7% (3, that E3 2, /3, and that
there exists m such that E" /4 (¢3,¢,,) for all n. The first of these results was shown by Graham and
Tressler [13] using a simple hexagonal grid construction. In [8, Theorem 8] Erdés et. al. proved that

E3 2 T for any triangle! T'; in particular, the second result, that E3 2 £3. The third result, that there
exists m such that E" /4 (¢3,(,,) for all n, is a recent result of Conlon and Wu [4]. They were able to
show a bound of m = 10°°, and in a recent paper, Fiihrer and Téth [11] were able to improve this to
m = 1177. Some other relevant results in the area are as follows.

e E? — (fy, K) for any K with 4 points (Juhdsz [15])
e E2 — (lo,05) (Tsaturian [17])
e There is a set K with 8 points, such that E? /4 (£, K) (Csizmadia and Téth [5])

E3 — (f,46) (Arman and Tsaturian [1])

E™ 4 (L, loen) for some constant ¢ > 0 (Conlon and Fox [3])

o E" 2 U (Erdods et. al. [8, Theorem 12])

An (a,b,c) triangle is a triangle with side lengths a, b, c. The following theorem is due to Erdés et.
al. [10, Theorem 1].

Theorem 2 (Erdds et. al.). A given 2-coloring admits a monochromatic (a,b,c) triangle if and only
if it admits a monochromatic equilateral triangle of side a, b, or c.

Note that /3 is a (1,1, 2) triangle. Thus, by scaling, Theorem 1 and Theorem 2 imply the following
corollary.

Corollary 3. If n > 2, then E" 2T for an (o, 2c, xav) triangle T' for any o > 0 and z € [1, 3].

This verifies another interesting case of the aforementioned conjecture of Erdés et. al. from [10]. We
refer to [10, 16] and [12, Theorem 11.1.4 (a)] for a collection of known families of triangles 7" such that

E2 2 T. In particular, Erdés et. al. [10] showed that [E? 2 T'if T has a ratio between two sides equal
to 2sin(6/2) with 0 € {30°,72°,90°,120°}. Our result handles the case that 6§ = 180°.
In the next section, we will give an outline of the proof of Theorem 1.

2 Sketch of proof

In this section, we will discuss the main ideas of the proof of Theorem 1. We start with a simple
corollary of Theorem 2.

'Throughout, degenerate triangles (that is, three collinear points) are also regarded as triangles.
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Corollary 4. If a coloring of E? does not contain a monochromatic {3, then it also does not contain
a monochromatic equilateral triangle of side-length 1 or 2.

Our proof of Theorem 1 will proceed in two parts, both with the same general outline. Each will
proceed by contradiction, starting with the assumption that there exists a coloring of E? that has no
monochromatic ¢3. Then, we begin with a small set of starting points, and show that all possible
colorings of those starting points will result another point that must be colored both blue and red;
that is, a contradiction. So far, we have the following “rules” at our disposal that will allow us to
execute this proof: we can take two points of the same color at distance 1 or 2 apart, and do one of
the following.

e Add a third point of the opposite color to form an /3 (as a midpoint if the points are distance 2
apart), or

e add a third point of the opposite color to create an equilateral triangle (of side-length 1 or 2).

Where the second option follows directly from corollary 4. Visually, we can think of these rules as

follows.

Figure 1: The color implication steps

These two rules are not quite enough to establish Theorem 1. Thus, the first part of the proof,
detailed in Section 2.1, will be to establish one more useful rule. Then, in section 2.2 we will describe
how to use our rules to prove Theorem 1.

2.1 Another rule

The goal of this section is to describe the following result.

Lemma 5. In any two-coloring of E? containing no monochromatic ¢3, any unit triangle colored blue-
blue-red has a blue centroid.

By a symmetric argument, under the same assumptions any red-red-blue triangle has a red centroid.
To outline the proof of this result, we need an efficient way to describe the coordinates of our point
sets. If a, b, ¢, d are integers, then all points we use will be of the following form:

[a,b,c,d] = (a\/§+b\/ﬁ’ C+d\/§) )

12 12 (1)

The proof will proceed as follows: we will start with a basic pointset, containing a unit equilateral
triangle and its centroid. Then, we will assume the triangle is colored blue-blue-red but has a red
centroid, and use the rules from the previous section (as in Figure 1) to derive a contradiction. The
pointset we will use is drawn in Figure 2, with the following explicit coordinates.

p1 = [_4707070]7 p2 = [0707070]7 pP3 = [2707 _670]7 P4 = [2707670]7
q1 = [_17 _3737 _1]7 q2 = [_17 - 7_35 ]-]7 q3 = [27070) 2]7 qg = [270307 _2]7
44 = [_37 _3a _37 _1]7 g5 = [_37 _37 37 1]
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q3
g5

Y2

q2 ’

q1 \
D3
q4 .
ds

Figure 2: The base points needed to verify the lemma

We will need to consider all possible colorings of this pointset, which results in some case work.
However, the symmetries present allow us to limit this to only 6 cases, and the color implications we
end up with are simple enough to be verified (somewhat tediously) by hand. Alternatively, we provide
a method to quickly verify the result computationally. We again refer to [6] for a complete description
of these results, but for the moment we use Figure 3 to visualize the simplest case - that is, where ¢;
and g9 have different colors.

S17

Figure 3: Case 1: ¢ is red and g2 is blue (or vice versa)

The contradiction comes from the fact that the point sig must be colored both red and blue; the
blue coloring comes from the ¢35 created with red points s1; and po, and the red coloring comes from
the equilateral triangle created with blue points si14 and s17. We note, finally, that not all points from
Figure 2 are used in this case. However, the remaining cases will make use of all of the p; and g;.
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2.2 Putting it all together

Using the rules described in section 2 as well as the one established in section 2.1, we can now complete
the proof of Theorem 1. We’'ll deal with a %—scaled hexagonal grid - that is, where the smallest
triangles are scaled to have edge-length % A straightforward argument (detailed in [6]) using these

rules shows that if we assume there is no monochromatic £3, then there is only one coloring of this grid
up to isometry - that is, the one pictured in Figure 4.

* b 4 * v * v
b 4 b 4
b 4 v
b 4 b 4
b 4 ¥
b 4 b 4
b 4 4
b 4 4
v v
b 4 b 4

Figure 4: A circle with radius % in the colored grid

To finish the proof is straightforward. We pick two points in our coloring that are less than distance
% from one another and have different colors; call them p; and po, and let them be red and blue
respectively. As illustrated in Figure 4, any point on the hexagonal grid at distance % from p; must
be red as well. By rotating the grid, we can actually show that all points at distance % from pq are
red, and symmetrically all points at distance % from py are blue. However, since p; and po are of

distance less than % from one another there must be a point that is distance % from both of these
points, which provides our contradiction.
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Abstract

In this paper, we provide a general upper bound on the balanced upper chromatic number of any
linear hypergraph, that is, the largest size of a vertex coloring of any linear hypergraph in which all
color-class sizes differ by at most one (balanced) and each hyperedge contains at least two vertices
of the same color (rainbow-free). We are particularly interested in understanding this parameter for
the n-dimensional cube on ¢ elements due to its close connection to the unexistence of a rainbow
Ramsey version of the Hales-Jewett Theorem. We improve the lower and upper bounds for this
hypergraph and (except for four cubes) completely determine this parameter in dimensions 2 and 3.

1 Introduction

Many classical Ramsey theory results that deal with the existence of a monochromatic object have
a rainbow counterpart: a theorem that guarantees the existence of certain rainbow subset (i.e. such
that no color is repeated) provided that the color set is sufficiently large and that all colors are well
represented. An example of this is van der Waerden’s theorem, whose rainbow counterpart for three
colors was studied in [8]. The novelty in [8] was to notice that rainbow structures can be forced to
appear not only by letting the number of colors grow, but also by fixing the number of colors and
letting all chromatic classes be large enough. This is because the more balanced the color classes are
the higher the number of rainbow substructures is. For instance, in k-colorings of the set of vertices of
a t-uniform hypergraph H, the number of rainbow t-sets of vertices is higher as the coloring becomes
more balanced. Therefore, when looking for a rainbow-free k-coloring of H, it is in principle harder to
find one among balanced k-colorings (this, of course, depends on the structure of H). Consequently, we
consider here balanced colorings of the vertices of a given hypergraph H, that is, colorings in which the
cardinalities of all color classes differ in at most one. In this setting, we aim to maximize the number
k of colors for which there is a balanced k-coloring of H without rainbow hyperedges, i.e. hyperedges
where all colors appear at most once. To avoid inconsistencies with this definition, we assume that all
hyperedges have size at least two.
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This maximum value, defined originally in [3], is called the balanced upper chromatic number of H,
and it is denoted by X, (H). Clearly, this parameter is related to the upper chromatic number X (H)
defined as the maximum number of colors in a coloring of H (not necessarily balanced) without rainbow
hyperedges, which has been the subject of study in many papers, see for instance [4, 5, 10]. Observe
that, if E(H) is the set of hyperedges and n is the order of H, then min{|e|: e € E(H)} —1 < x,(H) <
X(H) < n. Often, lower bounds for X(H) are obtained by colorings with one very large color class and
all other classes of size one. Evidently, such colorings do not provide lower bounds for ¥, (H) which
requires more involved constructions.

The upper balanced chromatic number of C}', the n-dimensional cube over t-elements, is in close
connection with the unexistence of a rainbow Ramsey version of the Hales-Jewett theorem, a central
result in Ramsey theory that establishes the existence of monochromatic combinatorial lines in any
finite coloring of C}* provided that n is sufficiently large, it was shown in [9] that, except for the case
(t,n) = (3,2), for every t > 3 and every n > 2, there are balanced ¢-colorings of CJ* without rainbow
lines. Moreover, for every even t > 4 and every n, there are balanced (%)n—colorings of C}' without
rainbow lines [9]. This shows that X,(Cy") > (£)". In a recent work by the authors of this paper [2], it
is proved that

_ 3t — (t +2)"
w(cr) < U (1)
for t > —2—. and that the bound is attained when t > 4n — 2.

Ve-1’
In Section 2, we generalize the idea leading into Inequality (1), providing a general upper bound for

the balanced upper chromatic number of any linear hypergraph, that is, a hypergraph where every two
edges intersect in at most one vertex, Theorem 1. Moreover, we complete the upper bound for the
case that v < 2e, showing that X, (H) < [2(1} +2e) — 4ve? + ev—‘ — 1. This bound comes very close to
the known upper bounds for the upper balanced chromatic number of finite projective planes, which
constitute a special family of linear hypergraphs, that were given in [3, 7].

In Section 3, we provide bounds for the balanced chromatic number of the n-dimensional cube. We
present a general lower bound that follows from Theorem 1 and sharper bounds for specific values of ¢
(improving those in [9]). Finally, Section 4 refines our results for the plane and the space.

2 General upper bound

We start presenting an upper bound for the balanced upper chromatic number of a linear hypergraph.

Theorem 1. Let H be a linear hypergraph with v vertices and e hyperedges. Then

. v—e if v > 2e,
Xp(H) < [2(v+26)—4\/m-‘_1 if v < 2e.

Proof. Consider a balanced c-coloring of H for some integer 2 < ¢ < v. Then there is an integer
1 < k < v such that all color classes are of size k or possibly k41. Let ¢, > 1 and cx41 > 0 be the number
of classes of size k and k + 1, respectively. Then ¢ = ¢ + ¢xy1 and v = keg + (k + 1)cgp1 = ck + cpiq.
Since 0 < ¢p41 < ¢, then k and ¢4 are the quotient and the remainder, respectively, when v is divided
by c. That is, k = [%] and ¢py1 =v —c|2]. Let e = & =2 — | 2| Thus ¢jpq =ccand k=2 — ¢,
where 0 < ¢ < 1. We say that a color blocks a hyperedge if at least two vertices of the hyperedge receive
that color. So an unblocked edge is a rainbow edge. Note that at most (g) ck+ (k—gl)ck-+1 = (g)c—i-kckH

hyperedges can be blocked by the distinct colors in the c-coloring. Hence, if

e > <§>C+k0k+1: <Z;6>C+(U_E)Ec:;<v_g) (1)—|—gc—c):%(1}—86)(1}4-50_0)7 @)

& &

then there is at least one rainbow hyperedge.
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First, assume that v > 2e¢ and let ¢ = v — e + 1. To prove that any c-coloring of H has rainbow
hyperedges, it is enough to verify Inequality (2). In this case, v = (v—e+1)-1+(e—1)=c-14+(e—1)
and the assumption v > 2e implies 0 <e—1<wv—e+1=c. Thusec=e¢—1 and

1 1

—(v—sc)(v+c€—c):m(v—(e—l))(v+(e—1)—(v—e—l—l)):e—1<e.

2c

Similarly, assume that v < 2e and let ¢ = [2(2} +2e) —4ve? + evw . It is enough to show that Inequality
(2) holds. Note that (rationalizing)

202 202
c>2(v+2e)—4\/e2 +ev = = . 3
( ) v+2e+2¢/(e2+ev) v+2e+/(v+2e)?—0v2 ®)
Because (v + 2¢)? — v? < (v + 2¢)?, it follows that ¢ > #226 This implies that e > %, which is

precisely Inequality (2) when € = 0.
Assume now that 0 <e < 1. Thus 0 <e(l —¢) < i. Since 2e > v and v > ¢, we have that

v+ 2e - v
26(1—¢)  e(l—¢)

>4v>v >ec. (4)

Also, v? > 4v%¢(1 — €). By Inequality (3) and rationalizing, we obtain

. 202 _vt2e—/(v+2e)? —dvZe(l —¢) 5)
v+ 2e++/(v+2e)2 — dv2e(l —¢) ; 2e(1—¢) .

Inequalities (4) and (5) imply that

V(v +2e)2 — dv2e(1 —¢) v+ 2e
2e(1—¢) ~ 2e(1—¢)

—c> 0.

Multiplying by 2¢(1 —¢) and squaring, we obtain (v +2e)? —4v?e(1 —¢) > (v+2e — 2¢(1 —¢)c)?, which
is equivalent to

1 1
e> % (1}2 —ve+ec? —5202) = Q—C(v—sc)(v+ec—c).
This is again Inequality (2) and thus there must be a rainbow hyperedge. OJ

The finite projective planes II; of order ¢ have the same number of lines (of size ¢ + 1) and points,
namely v = e = ¢ + ¢+ 1. It has been shown that ¥, (IL,) < v/3 [3, 7]. The upper bound above, which
in this setting falls into the second case, gives X, (I,) < (6 — 4v/2)v ~ 0.34v.

3 Geometric lines in hypercubes

In this section, we consider the n-cube over t elements, denoted by Cf* as an application of Theorem 1,
where the set of vertices is the set of points in R™ with entries in {0,1,...,¢t — 1} and the hyperedges
are the geometric lines of C}', that is, all the lines parallel to the axes and the main diagonals of
maximal hyperplanes. More precisely, CJ' = {x = (z1,22,...,2y) : 0 <xz; <t —1,2; € Z}; and a set
of t points in C}" is a geometric line if there is a labeling of the points xg, x1, X2, ...,X¢—1 such that if
X = (Ti1,%i2, i3, s Tin-2, Tin—1,Tin) for all 0 < i <t —1, then for every 1 < j < n it holds that
the entries of (zgj, 1, %2,j,...,%i—2j,2¢—1,;) are all equal to some fixed value a € {0,1,...,t — 1};
appear in increasing order 0,1,2,...,¢t — 1; or appear in decreasing order t — 1,¢ —2,...,1,0.

It is clear, that the number of vertices of this hypergraph is v = |(C}')| = t" and it is known that
the number of hyperedges is e = |£(C]')| = 3((t +2)" — ")) [6]. Since any two points in the cube
C% are in a line, then X,(C%¥) = 1. The general lower bound %, (C}") > (%)n for any even t > 4
was proved in [9]. The following result is a direct application of Theorem 1 with v = |C}'| = ¢" and
e=|L(CP)| = ((E+2)" —t")/2.
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Corollary 2. Lett and n be positive integers. Then

3" — (t+2)" TS 2
Sttt +2)" ;
_ 2 — n o Y
%(CF) < V2-1

Pu+m"—2 @+m%—¢%]—1 Jrst< 0

It can be checked that when ¢ = 2, this result implies X, (C%) = 1. Recently, we have proved that
this upper bound is tight when ¢ > 4n — 2 (see Theorem 3) by giving an intricate construction that
uses the Hall’s Marriage Theorem.

Theorem 3 ([2]). For integers n > 2 and t > 4n — 2, the balanced upper chromatic number of CJ* is
p(CF) = w This identity also holds for (t,n) = (5,2),(8,3), and (9, 3).

We conjecture that Theorem 3 remains true for 2/(/2 — 1) < t < 4n — 2. To confirm this, a
rainbow-free coloring with classes of sizes 1 and 2 needs to be found. The inclusion of the cases
(t,n) = (5,2),(8,3), and (9,3) confirms this conjecture for dimensions 2 and 3. We now focus on the
small values of ¢, namely, 2 < t < 2/({/2—1). First, we present a recursive lower bound that will allow
us to improve the lower bound in [9] and the best-known colorings in the space.

Theorem 4. Lett and n be positive integers and suppose that t has a proper divisor 1 < d < t. Then
— n _—
%(C7) = (2)" X (C)-

Proof. (Sketch) Partition C}" into (¢/d)™ n-cubes over d elements. Color each of these smaller n-cubes
with X,(C7) different colors for a total of (t/d)" X;,(CJ). To prove that this coloring has no rainbow
lines, we argue that any geometric line of C}* completely contains a geometric line of one of the (%)n
copies of CJ}. Since none of these smaller lines is rainbow (i.e., each of them has at least two points of

the same color), then the larger line is not rainbow. 0

When t = 4 and any n, the idea used in Theorem 4 can improve the lower bound in [9] for this case.
Proposition 5. Forn > 2, x,(C}) > 2" + 1.

Proof. (Sketch) Partition the cube C} into 2™ n-cubes over 2 elements C1, Cy, ... Con and denote by Cy
the centered n-cube over 2 elements, that is Cyp = {x = (z1,22,...,2,) € C},: x; € {1,2}}. Consider
the sets R; = C; — Cy. Assign color 0 to all vertices in Cy and color i to every vertex in R;, 1 < < 2™,
Note that this is a balanced partition of C} into 2" + 1 parts, 2" of size 2" — 1 and one of size 2", (see

Figure 1 for this coloring of Cf' for n = 3). This coloring contains no rainbow lines. O
o 9909
@ --":::_Q:*:QZ—:C:Q'::::'"”"ﬁ © ®000
ool " "9000 ;
‘ , %000 ' 000
2000 ’ 9009 |
‘ ; o ©9s . - —--»‘-----_;‘_‘_@::Q::Q 9
200 ¢ P s, =
003 3 9OEE

Figure 1: An illustration of the coloring in Proposition 5 for n = 3.

A direct application of Theorem 4 and Proposition 5 gives a lower bound that improves when ¢ is a
multiple of 4. Moreover, we were able to adapt the construction for every even t.

Theorem 6. Let n >2. If2 <t <mn andt is even, then \,(CJ") > ()" + [%]".
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Proof. (Sketch) If t = 0 (mod 4) the result follows directly by Theorem 4 and Proposition 5. If ¢t = 2
(mod 4) then we use the construction for ¢ — 2 adapted as follows. For every 1 < i < n consider the
two central (n — 1)-dimentional hypercubes C;; and Cjo defined as C; 1 = {(z1,22,...,2,) € Cf' :
z; = 52} and Cio = {(z1,72,...,2,) € CF' : 3; = £}. Use the coloring provided by Theorem 4 and
Proposition 5 for the set C* \ U, (Cj1 U Cj2), which can be seen as a copy of C}' 4 contained in C}*
(see the top part of Figure 2(e) to visualize this copy of C}', contained in C}* when (t,n) = (6,3),
ignore the colors.) Then, only the lines contained in U} ;(C;1UC}; 2) are not yet blocked by this partial
coloring, but we can block them using copies of C3', each of a different color. Ol

Note that this lower bound is nonsignificant for ¢ > 4n — 2 due to Theorem 3, but provides the best
known bound for the remaining even values of ¢t. The other modular classes of t mod n would require
a more detailed analysis that strongly depends on the dimension to expand the coloring of C}* | to C}'.
We illustrate this approach in Figure 2(d) for the case (¢,n) = (5, 3).

4 A summary of exact results and best bounds

In this section, we summarize the best-known bounds for the cases n = 2 and n = 3. In the 2-
dimentional case, the balanced upper chromatic number is completely determined. In the 3-dimentional
case, four cases 4 <t < 7 remain open. Table 1 shows the best bounds we know for these values.

Theorem 7. For n = 2, X,(C2) = 2, X,(C3) = 7, and X,(C?) = t> —2t — 2, for t > 5. Forn = 3,
Xp(C3) = 3, and X,(C}P) = 3 — 3t2 — 6t — 4, fort > 8.

Proof. In the plane (n = 2), the cases t > 5 are covered by Theorem 3. The balanced rainbow-free
3-coloring shown in Figure 2(a) shows that the upper bound in Theorem 1 is tight for ¢ = 4. It is
known that in any balanced 3-coloring of C’%, there is a rainbow line, which means that yb(C’??) <2
[9]. Since 2 colors are not enough to block a line in this cube, then ¥, (C3) = 2. In the space (n = 3),
the cases t > 8 are covered by Theorem 3. For ¢t = 3, the balanced rainbow-free 3-coloring shown in
Figure 2(b) shows that X,(C3) > 3. We ran a computer program to check that all balanced 4-colorings
of Cg contain a rainbow line showing that Xb(Cg) = 3. Our program searched among a reduced set of
O(13!) colorings. Such a coloring would have 3 colors that are used 7 times and one color that is used
6 times. We reduced the number of possible colorings to be checked by fixing the color of the point in
the center of the cube and using the fact that the other two points in any line through the center are
either the same color or one of them is the same color as the center. O

The question of determining ,(C{") for 3 <t¢ < 4n — 2 remains open for higher dimensions.

t | lower bound Th. 6 ‘ lower bound Fig. 2 | upper bound Th. 2
4 4 12 18*
5 - 26 47
6 28 40 95
7 - 64 171

Table 1: Best bounds for ,(C}) when n = 3 and 4 <t < 7. * The bound resulting from Theorem 2 is
19 but we have improved it to 18 [2].
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Figure 2: Rainbow-free colorings of (a) C%, (b) C3, (c) C3. (d) C2, (e) C§, (f) C2. The shaded regions
highlight a coloring of a smaller size (e.g. the shaded region in (e) corresponds to the coloring in (c).)
All colorings in (d)-(f) expand the one in (¢), so (¢)-(f) have color classes of sizes 5 and 6.
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Abstract

‘We consider positional games where the winning sets are edge sets of copies of fixed spanning trees
or tree universal graphs. We prove that in Maker-Breaker games on the edges of a complete graph
K,,, Maker has a strategy to occupy the edges of a graph which contains copies of all spanning trees
with almost linear maximum degree, and we give a similar result for Waiter-Client games. By this, it
follows that both Maker and Waiter can play at least as good as predicted by the so-called random
graph intuition. Moreover, our results improve on special cases of earlier results by Johannsen,
Krivelevich, and Samotij as well as Han and Yang. Additionally, when the target of the building
player is a copy of only one fixed spanning tree, then we show that in the Waiter-Client game on
K,,, Waiter can do even better than suggested by the random graph intuition, while the same is not
true for Client in the similarly looking Client-Waiter game.

1 Introduction

Tree embedding problems have a long history, ranging from the embedding of a fixed tree (e.g. [13,
18, 19]) over universality results (e.g. [11, 17, 22]) to packing problems (e.g. [3, 16, 23]). Research in
this branch of combinatorics was influenced by many beautiful problems, including the appearance of
particular subgraphs in the binomial random graph G(n,p), as well as challenging conjectures, such as
the well known Ringel’s Conjecture from 1968 and Gyarfas Tree Packing Conjecture from 1978, just to
mention a few. For an overview on general graph embedding problems we recommend the survey [6].

In our paper, we want to take a look at such tree embedding problems from a game theoretic
perspective, as it has been started already in a series of papers, see e.g. [5, 7, 8, 10, 12, 17, 21].
In general, given any hypergraph H = (X, F), a positional game on H is played as follows. Two
players claim the elements of the board X in rounds according to some predefined rule; and the winner
is determined according to some rule that involves the winning sets in F. Specifically, we will be
interested in the following three types of such games.

e Maker-Breaker games: Maker and Breaker alternatingly claim one element of X which was
not claimed before. Maker wins if she occupies all elements of a winning set, and Breaker wins
otherwise.

*The full version of this work can be found in [1, 2] and will be published elsewhere. The research of the fourth and
sixth author is supported by Deutsche Forschungsgemeinschaft (Project CL 903/1-1).
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e Waiter-Client games: In each round, Waiter offers two elements of X to Client, and then Client
decides which element is claimed by him, and which element goes to Waiter. Client wins if he
avoids to claim a full winning set, and otherwise Waiter wins. (If in the last round there is only
one unclaimed element in X, then it is given to Waiter.)

e Client-Waiter games: The elements of X are claimed in the same way as in Waiter-Client
games, but this time Client wins if at some point he occupies a winning set, and Waiter wins
otherwise.

We note that the above games, when played on the edges of the complete graph K, often but not
always show to have some strong connection to properties of random graphs, referred to as random
graph intuition, which roughly speaking suggests that the outcome of a game between perfect players
can be predicted by looking at the typical behaviour of a randomly played game in which each player
creates a random graph. Prominent examples for such a relation between positional games and random
graphs are e.g. the Maker-Breaker clique game [4], the Maker-Breaker Hamiltonicity game [20], and the
Waiter-Client H-game [24]. For a general overview on positional games we refer to the monograph [15].

In the following we will stick to games on X = E(K,), the edge set of a complete graph K,, on n
vertices. For any spanning tree T' of K,,, we will consider the family Fr consisting of all copies of T" in
K,,. Moreover, we will be interested in the family T'(n, A) of all graphs which are universal for trees
on n vertices with maximum degree at most A, i.e. graphs which contain a copy of every such tree.

Starting with games in which Maker wants to claim a copy of a fixed tree, Ferber, Hefetz and
Krivelevich [10] asked for the largest value d = d(n) such that in a Maker-Breaker game on the edges
of K,,, Maker has a strategy to claim a copy of any tree T provided that the maximum degree satisfies
A(T) < d and n is large enough. An analogue question for Waiter-Client games has then been asked
in [8], and related questions regarding tree universality were studied in [5, 17]. We note that in all
cases the random graph intuition would suggest that the largest value for the maximum degree A(T)
such that the building player (i.e. the player who aims for a winning set) wins should be of the order
%, see e.g. [19] for the case when a tree T is fixed. However, all previously known results are quite
far away from this desired bound on A(T'): Hefetz et al. [14] proved that Maker can claim a Hamilton
path within n — 1 rounds. With a tiny worsening in the number of rounds, this was extended to trees of
constant maximum degree [7] and trees with A(T) < n%% [10]. Not aiming for a fast winning strategy,
Johannsen, Krivelevich, and Samotij [17] further improved the bound on the maximum degree, where
their result is much more general as it also considers games played on expander graphs and it gives a

lfg(f) Recently, the latter

by Han and Yang [12]. Moreover, all of the above results stay true

Maker’s winning strategy for tree universality, i.e. for T'(n, A), when A <

was further improved to A < lconi
g(n)

when considered in the Waiter-Client context, see [5, 8].

2 Tree Universality

As our first contribution to positional games involving spanning trees, we show that for the tree
universality game T'(n, A), Maker and Waiter can play at least as good as predicted by the random
graph intuition.

Theorem 1 (Tree Universality, Maker-Breaker version, Theorem 1.1 in [2]). There exists a constant
¢ > 0 such that the following holds for every large enough integer n. In the Maker-Breaker game on
K,,, Maker has a strategy to occupy a graph which contains a copy of every tree T with n vertices and

mazximum degree A(T) < 1o§?n)'

Theorem 2 (Tree Universality, Waiter-Client version, Theorem 1.2 in [2]). There exists a constant
¢ > 0 such that the following holds for every large enough integer n. In the Waiter-Client game on
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K,,, Waiter has a strategy to force Client to claim a graph which contains a copy of every tree T with

n vertices and mazimum degree A(T) < 5.
g(n)

For the proofs of Theorem 1 and Theorem 2 we combine many different tools, including properties of
expander graphs, simple absorption and random embedding arguments as well as winning criteria for
positional games. While most of our tools are rather standard, the difficulty and novelty in our proof,
when compared with the earlier results in [12, 17], lies in finding a suitable list of structural properties
which (a) help to embed every tree of the mentioned maximum degree and (b) can be achieved by
Maker and Waiter, respectively. Note that the more structural properties are added to such a list, the
easier (a) can be proven, but the more difficult (b) gets. The following theorem provides such a list.

Theorem 3 (Theorem 3.1 in [2]). Let a € (0,1), and Cy > 0 be any constants. There exist constants
v',e > 0 and a positive integer ng such that the following is true for every v € (0,v') and every integer
n > ng.

Let G = (V, E) be a graph on n vertices with a partition V.= Vi U Vs of its vertex set such that the
following properties hold:

(1) Partition size: |Va| = 500[yn].
(2) Suitable star: There are a vertexr x* and disjoint sets R*, S* C Vi such that the following holds:

(a) |S*| = |25Cplog(n)| and S* C Ng(x*).

(b) |R*| < 25 and for each v € R* the following holds: If v is not adjacent with x*, then v is
adjacent with a vertex s, € S*, such that s, # sy if v # w.

(c) For allw eV \ (R*US*), we have dg(w,S*) > 2Cylog(n).

(3) Pair degree conditions: For every v € V(G) there are at most log(n) vertices w € V(G) such that
|INa(v) N Ng(w) N V1| < an.

(4) Edges between sets: Between every two disjoint sets A C Vi and B C V' of size |Cplog(n)] there
is an edge in G.

(5) Suitable clique factor: In G[Va] there is a collection IC of 100|yn| vertez-disjoint Ks-copies such
that the following holds:
(a) There is a partition K = Kgooq U Kpaq such that [Kpeq| = [y1].
(b) Every vertex v € V' which is not in a clique of Kgooq satisfies dg(v, Va) > 40[yn].

c) For every cliqgue K € K,o0q there are at most yn cliques K' € K,o0q such that G does not
g g
have a matching of size 3 between V(K) and V(K').

Then G contains a copy of every tree T on n vertices with mazximum degree A(T) < log(‘n).

The proof of Theorem 3 can be found in [2], and its overall idea can be summarized as follows. We
make a case distinction depending on whether the given tree T contains many bare paths of suitable
length (i.e. paths such that all inner vertices have degree 2 in the given tree) or many leaves. In the
first case, we embed 7' minus the bare paths into Vi, by using the properties (3) and (4) together with
a criterion by Haxell [13] that helps to embed almost spanning trees into expander graphs. Then, with
property (5), we manage to embed all the remaining bare paths to complete a copy of T', and at the
same time absorb all leftover vertices from V; into our embedding. In the second case, we proceed
similarly and embed the leaves at the end of our embedding procedure. However, in order to succeed
with this final embedding step, we slightly modify the first step involving Haxell’s criterion as follows:
If there is a vertex x in T" which is adjacent to many neighbours of leaves, we modify Haxell’s criterion
to make sure that x can be embedded onto z* (see property (2)) and that we can use S* exclusively for
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the embedding of leaf neighbours. Otherwise, if such a vertex x does not exist, we make sure that in
the application of Haxell’s criterion a small subtree of T', which itself contains many leaf neighbours, is
embedded in a suitable (i.e. random) way into V;. In both cases, also using the properties (2)—(4), we
then obtain suitable properties for our partial embedding that help to finish the embedding of T with
a generalization of Hall’s Theorem.

For the final proofs of Theorem 1 and Theorem 2, i.e. for giving strategies that create a graph
satisfying the properties (1)—(5), we combine many standard tools from positional games, including
results on degree games, clique factor games plus the well-known Erdés-Selfridge Criterion and variants
of it. A novelty in our proof is that we also play a pair degree game which is necessary for applying our
random embedding argument above. While for Maker-Breaker games property (3) cannot be improved
in the sense that each pair of vertices gets a large common neighbourhood, for Waiter-Client games we
can prove the following more general statement which allows to obtain large common neighbourhoods
for all sets of at most logarithmic size.

Lemma 4 (Lemma 6.2 in [1]). Let 8 € (0,1). Then for every large enough integer n and every t € N
such that t < 0.1logy(n) the following holds. Suppose G is a graph on n vertices and for every set A
of t vertices we have a set Y4 C Ng[A] of at least Bn common neighbours. Then in the Waiter-Client
game on G, Waiter has a strategy such that at the end of the game, Client’s graph C' satisfies the
following:
6n
INc[A] N Yyl > 20001 for every A C V(G) such that |A| = t.

We believe that the above lemma could be of independent interest, as it may be helpful for other

games in which Waiter’s goal is to claim complex spanning structures.

3 Results on fixed trees

We believe that the bound of ﬁ in Theorem 1 is best possible and pose this as a conjecture. One
reason for believing in this conjecture is that Maker-Breaker games often behave as predicted by the
random graph intuition, or Maker performs even worse than this prediction. Indeed, for the randomly
played game it follows from [18] that there are fixed trees of maximum degree @(logn) which with high
probability are not contained in Maker’s random graph.

For Waiter-Client games, the situation is completely different, and in fact, we can prove that for
any fixed tree T' of not too large but linear maximum degree, Waiter has a winning strategy for the
Waiter-Client game with winning sets Fr. It then becomes natural to ask for the largest constant ¢
such that Waiter can always win if A(7") < ¢n and n is large enough. With the following two theorems

we give a small window for the size of c.

Theorem 5 (Theorem 1.2 in [1]). For every e € (0,3) there ewist positive constants b and ng such
that the following holds. Let T, be a tree on n > ng vertices with A(T),) < (% — 8) n. Then Waiter has

a strategy to force a copy of T,, in the Waiter-Client game on K, within at most n + b\/n rounds.

Theorem 6 (Theorem 1.3 in [1]). There are positive constants v and ng such that the following holds
for every n > ng. There exists a tree T,, with n vertices and A(T,) < (% — ’y) n such that Client can

avoid claiming a copy of T, in the Waiter-Client game on K.

The proof of Theorem 5, which is given in [1], is an involved study of ad-hoc winning strategies
for Waiter consisting of several cases and stages, depending on the existence and distribution of large
degree vertices in T, the structure of the tree after all such vertices get deleted, and the existence of
suitable bare paths as well as matchings incident with leaves. We skip the details here.

In contrast to this, Theorem 6 is obtained by analysing a partially randomized strategy for Client.
We prove this theorem with v = 0.001 but do no effort to optimize it, as we believe that our randomized

strategy is not optimal. We also note that it is easy to find trees with maximum degree close to 5 that
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Client can avoid. Although this improvement by the constant « in Theorem 6 may seem cosmetic, we
believe that it is important for determining a best possible constant ¢ for which Waiter can always win
if A(T') < cn and n is large enough.

Finally, we consider the Client-Waiter version of the above game. In contrast to the above results, it
turns out that Client, who is the building player now, cannot do better than predicted by the random
graph intuition. Indeed, the following statement can be obtained as a corollary of Lemma 4.

Theorem 7 (Theorem 1.3 in [1]). There are positive constants ¢ and ng such that the following holds.

For every n > ng there exists a tree T, with n vertices and A(T,) < 1o§?n) such that in o Client- Waiter

game on K,, Waiter can prevent Client from claiming a copy of T),.

4 Open problems

As already stated, we believe that Theorem 1 is optimal up to the constant factor ¢, but we think that
Waiter can do better. Therefore, we state the following two conjectures.

Conjecture 8. There exists a constant C > 0 such that the following holds for every large enough
integer n. In the Maker-Breaker game on K, , Breaker has a strateqy such that Maker cannot build a

graph which contains a copy of every tree T with n vertices and mazimum degree A(T) < lo(gj(’; 3

Conjecture 9. There exists a constant ¢ > 0 such that the following holds for every large enough
integer n. In the Waiter-Client game on K,,, Waiter has a strateqy to force Client to claim a graph
which contains a copy of every tree T with n vertices and mazimum degree A(T) < cn.

Similarly and based on other known results on Client-Waiter games we suspect that the Client-Waiter
game with winning sets 7'(n, A) behaves according to the random graph intuition. Due to Theorem 7
it remains to prove the following conjecture.

Conjecture 10. There exists a constant ¢ > 0 such that the following holds for every large enough
integer n. In the Client-Waiter game on K,,, Client has a strategy to build a graph which contains a

copy of every tree T with n vertices and mazimum degree A(T) < log?n).

Last but not least, recall that in our strategy for Theorem 2 it was beneficial to know that Waiter
can force a spanning graph where every pair of vertices has a common neighbourhood of linear size.
We wonder how large this pair degree can be made.

Problem 11. Find the mazimum o« such that for every large enough n Waiter has a strategy in the
Waiter-Client game on K, to force Client to claim a spanning subgraph C' with the following property:
for any two vertices v,w we have |No(v) N No(w)| > an.
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Abstract

We study the cycle distribution of a random n-lift of a fixed d-regular graph on m vertices,
deriving an asymptotic formula for the probability that it has girth at least ¢ = g(n), provided
that g(n) grows sufficiently slowly with respect to m, d and n. As a consequence of the existence
of lifts with high girth, we construct graphs with very large girth that admit frozen colourings, and
graphs with moderately large girth where typical colourings are partially-frozen. The latter result
shows the tightness on the girth condition of a recent theorem on graph colouring rigidity by Hurley
and Pirot [STOC, 2023].

1 Introduction

An n-lift of a graph G is a graph L = L,(G) with vertex set V(L) := V(G) x [n] and edge set
obtained as follows: for every edge uv € E(G), we place a perfect matching between the sets {u} x [n]
and {v} x [n]. Let £,,(G) be the set of all n-lifts of a graph G.

A random n-lift of G, denoted by L, (G), is an n-lift of G chosen uniformly at random from £, (G).
It is worth noticing that we may generate IL,,(G) by choosing each perfect matching corresponding to
an edge in G, independently and uniformly at random.

Random lifts of graphs were introduced by Amit and Linial in 2002 [2, 3] and since then, they have
attracted a lot of interest in the area. Among other works, we highlight the results of Amit, Linial
and Matousek [4] on their independent and chromatic numbers, the results of Greenhill, Janson and
Rucinski [10] on their number of perfect matchings, and the work of Bordenave [6] on their spectral
properties.

Fortin and Rudinsky [8] studied the distribution of short cycles in random lifts. Given a sub-
graph H C L, its pattern is the multigraph on V(G) obtained by adding an edge (u,v) for every
edge (u,x)(v,y) € E(H). The following observation is key to study the cycles of random lifts

If C is a k-cycle of L € L,(G), then the pattern of C' is a closed non-backtracking k-walk in G.

*This project was initiated during a research stay of GS at Universitat Politécnica de Catalunya supported by the
Research and Innovation Staff Exchange (Horizon 2020) RandNET: Randomness and learning in networks (MSCA-RISE-
2020-101007705).
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Let wg(G) be the number of closed non-backtracking k-walks in G. For all & > 3, we let

wi(G)

A (G) = ok

and

ko1
pe(G) =Y M(G).
=3

Theorem 1 ([8]). Let n € N and d > 3, and let G be a d-regular graph. For any k > 3, let Zj
be the number of cycles of length k in L, (G). Let Zy be independent random variables with Poisson
distribution of parameter \i,(G) respectively. Then (Zipn)k>3 — (Zk)k>3 in distribution as n — oo.

For any graph H, let g(H) be its girth; the length of a shortest cycle. The previous result implies
that, for every gg > 3,
lim P(g(Ln(G)) > go) = e "0 > 0. (1)

n—oo

The qualitative behaviour of short cycles in random lifts is the same as for other random graph
models, such as Erdés-Rényi random graphs or random regular graphs (see e.g. [9]). In the case
of random regular graphs, McKay, Wormald and Wysocka [12] went a step further and studied the
distribution of long cycles. As a corollary, they obtained an enumeration formula for d-regular graphs
on n vertices with girth at least g, provided that (d — 1)2973 = o(n).

Our main result extends (1) in the line of [12], allowing for the girth g(n) to tend to infinity
when n — oo, provided it does it sufficiently slowly with respect to the other parameters.

Theorem 2. Letn € N, d = d(n) > 3, m = m(n) and g = g(n) such that m(d —1)29=* = o(n). If G
s a d-reqular graph on m wvertices, then,

P(g(Ln(G)) > g(n)) ~ e o (), (2)
An immediate corollary of our main theorem is the existence of lifts of any fixed regular graph G
with very high girth.

Corollary 3. Let n € N, d = d(n) > 3, m = m(n) and g = g(n) such that m(d — 1)29=* = o(n).
If G is a d-regular graph on m wvertices, then, for any sufficiently large n, there exists L € L,(G)
with g(L) = g(n).

The condition on the parameters is not far from optimal. Recall Moore’s bound for odd girth: the
number of vertices of any d-regular graph with girth at least g = 2s + 1 is

s—1
n>1+d» (d—1) > (d—1)01"
i=1
and thus the restriction on the girth is tight up to a constant factor.

1.1 Ideas of the proof

To exemplify the ideas behind the proof of Theorem 2, we give a sketch of a direct proof of Corollary 3
that does not use the theorem. The approach is a combination of the second moment technique and
the switching method, that we now detail.

One of the most important aspects is to control the expected number of appearances of k-cycles (and
other subgraphs) in random lifts, which is done using the two lemmas below.

Lemma 4. For every k > 3 satisfying m(d —1)?*=* = o(n), if X}, is the number of k-cycles in L,(G),
then
E(Xk) ~ A(G).
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A graph H is feasible if its vertex set is a subset of V(G) X [n] and there exists L € £,,(G) with H C L.

Lemma 5. Let H be a connected feasible graph on h vertices and e edges. Let Yy be the number of
subgraphs isomorphic to H in L,(G). If e = o(n'/?), then

E(Yy) = O(md"tn"~¢).

We use these two results in the next lemma, which is proved by an application of the second moment
method. Crucially, we also use an upper bound on the number of subgraphs H that can be obtained
from the union of two cycles, that depends on the number of components and the number of edges of
the intersection graph of the two cycles, that was derived in [12].

Lemma 6. Let s := max{2X\x(G),log?n}. Then,
P(Xy > sg, for some 3 <k < g)=o(1).

Moreover, the probability that there are two cycles of length shorter than g that share at least one edge
is o(1).

With the previous lemma in hand, we give a proof of the existence of a lift of G with no cycles of
length less than g (short cycles), that we now sketch.

Let Lo be a graph that satisfies the conclusions of Lemma 6 (few short cycles and all of them
edge-disjoint). A key property is that the number of vertices participating in short cycles is at most

Q
|
—

ksk = o(n).
3

e
Il

In the classical argument of Erdés to find graphs with large girth and large chromatic number (see
e.g. [1]), an arbitrary vertex of each short cycle is deleted, which enforces the girth to be at least g.
However, since we want to maintain the property that the final graph is a lift of GG, we need to find an
alternative way to get rid of the short cycles of L. The idea will be to use a switching-type argument
to destroy them one by one, while keeping the structure of a lift. In doing so, we will strongly use that
the cycles are edge-disjoint.

A switch on L € L,,(G) is a local transformation defined as follows: Let uv € E(G) and x1, x2,y1,y2 €
[n] such that (u,z1)(v,y1) and (u, z2)(v,y2) are edges of L, and (u,z1)(v,y2) and (u,x2)(v,y1) are not.
Then, we delete the former two edges from L and add the latter two. Observe that the resulting graph
is also in £, (G).

Given an edge e = (u,x1)(v,y1) and a cycle C of L with e € E(C), we say that f = (u,x2)(v,y2)
is (e, C)-good if and only if:

(i) f is not in a short cycle of L, and

(ii) dist(f,c) > g for every c € V(C).

Starting with Lg, we construct a sequence of lifts Lg, L1, Lo, ... such that every lift has less short
cycles than the previous one. To do so, at step i we choose any cycle C; of L; and any edge e; € E(C;).
Then, we choose f; to be a (e;, C;)-good edge of L; and we switch e; and f;. The rest of the proof

consists on showing that: (1) after the switch the number of short cycles in the resulting graph has
decreased, and (2) every pair (e;, C;) has at least one good edge f;.
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2 Existence of large girth graphs with frozen and partially-frozen colourings

Beyond the existence of lifts with large girth, our result have implications in Graph Colouring. Let G
be a graph and m € N. The m-recolouring graph of G, denoted by R,,(G), is the graph whose vertices
are the proper m-colourings of G and two colourings are adjacent if they differ at exactly one vertex.
An isolated vertex in R,,(G) is called a frozen colouring of G, and can be understood as a colouring
that admits no single-vertex recolouring that keeps its properness. The frozen terminology comes
from Glauber dynamics on colourings, a Markov chain with state space R,,(G) used to sample almost
uniform m-colourings of G. In the dynamics, frozen states correspond to absorbing states of the chain,
and impede the chain to converge to the uniform distribution. It is thus interesting to study under
which conditions, such colourings may appear.

Let us first review some structural properties of R,,(G). If G has maximum degree A, a necessary
condition for the existence of frozen colourings is m < A + 1. In particular, if m = A + 1, then the
graph G must be d-regular, where d = A. In this abstract, we will restrict ourselves to the case where G
is a d-regular graph and m =d + 1.

Feghali, Johnson and Paulusma [7] proved that R;41(G) is composed of a unique connected compo-
nent of size at least 2 and a number of isolated vertices (frozen colourings). Bonamy, Bousquet, and
the first author [5] studied the fraction of vertices that are isolated in Rj41(G): when G is a large
connected graph, the number of frozen colourings is exponentially smaller than the total number of
colourings. This justifies that, even though the Glauber dynamics might not be irreducible, it can still
be used to sample almost uniform (d + 1)-colourings of G.

Observe that a d-regular graph G on N vertices has a frozen colouring if and only if G is isomorphic
to an n-lift of K441, the complete graph on d + 1 vertices, for n(d+1) = N. For the “if” part, one can
obtain a frozen colouring of G by colouring each vertex with the corresponding vertex from K4, 1. For
the “only if” part, any frozen colouring splits the vertex set of G into d 4+ 1 independent sets of equal
size, in this case n. By a simple counting argument, there are n edges within any two sets, and by the
frozen condition, they form a matching. Together with (1), this shows the existence of graphs of large
girth that admit a frozen colouring. As a consequence of Corollary 3, we obtain the following.

Corollary 7. Letn € N, d = d(n) > 3 and g = g(n) such that (d — 1)2973 = o(n). Then there exists
a d-reqular graph on n vertices and girth at least g that admits a frozen (d + 1)-colouring.

Recently, Hurley and Pirot [11] studied uniformly random proper m-colourings of sparse graphs with
maximum degree d in the regime d < mlogm. Sparsity in this setting is controlled by the girth: the
larger the girth, the less density of edges in local neighbourhoods. The main concern of their paper
is to understand the shattering threshold, the minimum number of colours that are needed for R,,(G)
to resemble R,,(G,, q), where G,, 4 is a random d-regular graph. In this direction, they proved that a
typical m-colouring of a large girth graph is not “rigid” in the following sense.

Theorem 8 ([11]). Let e > 0 and m € N large enough such that d < (1—e)mlnm. If G is a graph onn
vertices, mazximum degree d and girth at least Inlnn, then a uniformly random proper m-colouring o
of G satisfies w.h.p.t, for all v € V(Q)

(i) for all j € [m], there exists a colouring T with T(v) = 7, that differs at O(log?n) vertices with .
(ii) for all j € [m], the component of o in R,,(G) contains a colouring T with T(v) = j.

Properties (i) and (ii) deal with the geometry of the solution space (of colourings) and are also shared
with colourings of random graphs. In this direction, a natural problem is to determine which are the
minimum sparsity requirements on G that ensure such properties hold. Hurley and Pirot showed that
the condition g(G) > Inlnn cannot be replaced by g(G) > C, for any constant C' > 0. Here, indeed, we
show that lower bound on the girth required in Theorem 8 is essentially optimal, even for m = d + 1.

We say that a property holds with high probability (w.h.p.) if the probability it holds tends to 1 as n — oo.
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Given an m-colouring o of G and v € V(G), following [11], we say that v is frozen in o if 7(v) = o(v)
for all 7 in the same component of R,,(G) as 0. Note that if v is frozen, then condition (ii) is not
satisfied.

Proposition 9. For every v > 0, d > 3 and sufficiently large ng, there exists n > ng and a d-reqular
graph G on n vertices of girth at least <m —fy) Inlnn with the following property: if o is a

1-o

uniformly random proper (d + 1)-colouring of G, w.h.p. o has at least n @) frozen vertices.

We include the proof of this proposition which is a simple application of our previous results.

Proof of Proposition 9. Let § > 0 be sufficiently small with respect to v and d. Let g = (1/2 —
9)logy_1 ng. By Corollary 7, there exists a d-regular graph Gy on ng vertices of girth at least ¢g that
has a frozen colouring.

Let € > 0 be sufficiently small and fix n the smallest multiple of ng such that n® > (d + 1)". As §
has been chosen small enough, we have that

Inlnn.

1

9(Go) > <2ln(d—1) - ’Y)
Let k = n/ng and let G be the graph composed of k vertex-disjoint copies of Gy. The uniform proba-
bility space over (d + 1)-colourings of G is a product space of k uniform and independent probability
spaces over (d + 1)-colourings of Gy. Since Gy admits at least one frozen (d + 1)-colouring, the prob-
ability a uniform random (d + 1)-colouring of Gy is frozen is at least p := (d + 1)7"0. It follows that
the number of frozen (d + 1)-colourings in the copies of G in G stochastically dominates a Binomial
random variable with k trials and probability p. By Chernoff inequality, w.h.p. the number of copies
of Gy where o induces a frozen colourings is at least

k.
2(d+ 1)m0’
and the number of frozen vertices is at least

k - nl—e
n .
0" 2(d+ 1) T 2

Since the choice of € > 0 is arbitrary, we conclude the proof of the proposition. O
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Abstract

An almost cover of a finite set in the affine space is a collection of hyperplanes that together
cover all points of the set except one. According to the Alon-Fiiredi theorem, every almost cover
of the vertex set of an n-dimensional cube requires at least m hyperplanes. Here we investigate
a possible generalization of this result to Coxeter permutahedra: convex polytopes whose vertices
form the orbit of a generic point under the action of a finite reflection group.

1 Introduction

An almost cover of a finite set in the affine space is a collection of hyperplanes that together cover
all points of the set except one. According to a classical result of Jamison [11], an almost cover of
the n-dimensional affine space over the g-element finite field requires at least (¢ — 1)n hyperplanes.
Equivalently, to pierce every affine hyperplane in Fy; one needs at least (¢ — 1)n + 1 points, see [5]. See
also [4] for further results in finite geometries. Another example is the Alon-Fiiredi theorem [2]: Every
almost cover of the vertex set of an n-dimensional cube requires at least n hyperplanes.

Consider those points in the n-dimensional space whose coordinates form a permutation of the first n
positive integers. The elements of this set P, are the vertices of a convex (n — 1)-dimensional polytope
called the permutahedron (spelled also as permutohedron) II,,_;. For n = 3 it is a regular hexagon,
for n = 4 a truncated octahedron. This polytope has many fascinating properties and can be used to
illustrate various concepts in geometry, combinatorics and group theory, see [13]. Our starting point is
the following analogue of the Alon-Fiiredi theorem observed by Hegediis, see [8].

Theorem 1. Fvery almost cover of the vertices of 11,,_1 consists of at least (g) hyperplanes. This
bound is sharp.

A zonotope is a convex polytope that can be represented as the Minkowski sum of a finite number
of line segments. A collection of line segments is called nondegenerate if no two of the segments are
parallel to each other. Each zonotope Z can be written as the Minkowski sum of a nondegenerate
collection of line segments, unique up to translations. The number of the summands, denoted by
rk(Z), we call the rank of Z. In [8] we suggested that the above result and the Alon—Fiiredi theorem
must be representatives in a more general famework.

Conjecture 2. Every almost cover of the vertices of a zonotope Z consists of at least rk(Z) hyperplanes.

“Email: karolyi.gyula@renyi.hu
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Apart from some small examples, all zonotopes for which we were able to verify this hypothesis
turned out to be Coxeter permutahedra. Our purpose here is to initiate a systematic study of the almost
covers of their vertex sets based on a polynomial method colloquially referred to as the application of
the Combinatorial Nullstellensatz.

We express our gratitude to Giinter M. Ziegler for identifying one of our first examples as a per-
mutahedron of type B, and to Francesco Santos for drawing the beautifully illuminating paper [6] of
Fomin and Reading to our attention. For additional background information we refer to [9, 10].

2 Two elementary examples

The 2-dimensional zonotopes of rank r are exactly the centrally symmetric convex 2r-gons, and every
almost cover of such a polygon with lines requires at least r lines. There are two types of them that
occur as zonotopal Coxeter permutahedra: regular 2r-gons and equiangular 2r-gons (r even) with
alternating edge lengths. (The vertices of) any prism over such polygons have almost covers of size
r+ 1. An elementary argument using a simple modular invariant reveals that r planes do not suffice.

Theorem 3. Let Z be a prism over a reqular 2n-gon. Then every almost cover of the vertices of Z
consists of at least rk(Z) = n + 1 planes.

Theorem 4. Let Z be a prism over an equiangular 4n-gon having alternating edge lengths. Then every
almost cover of the vertices of Z consists of at least rk(Z) = 2n + 1 planes.

3 The polynomial toolkit

The Combinatorial Nullstellensatz, formulated by Noga Alon in the late nineties, describes, in an
efficient way, the structure of multivariate polynomials whose zero-set includes a Cartesian product
over a field F. This characterization immediately implies ([1]) the first part of the following theorem.

Theorem 5. Let Si,...,S, be subsets of F, |S;| = ki, and let f be a polynomial in Flx] = Flxy,...,zy]
whose degree is at most Y i, (k; — 1).

(i) If f(s) = 0 for every s € Sy X --- X Sy, then the coefficient of the monomial ;" xf"_l in fis
zero.

(ii) If f(s) = 0 for all but one element s € Sy X -+ X Sy, then the coefficient of the monomial
[T, =¥ in f is not zero.

The second part can be derived directly from (i) rather easily and is contained implicitly in many
works, e.g. it is a very special case of Corollary 4.2 in [3]. The result has innumerable variations with
even more different proofs, see e.g. [12]. Apparently they all depend on two basic principles: reduction
modulo a standard Groébner basis and Lagrange interpolation. It also implies the following immediate
consequence of Theorem 5 in [2] we find particularly useful for the present work.

Theorem 6. Let Si,...,S, be nonempty subsets of F, B = S1 x --- x S,. If a polynomial f €
Flz1,...,2,] vanishes at every point of B except one, then its degree is at least Y -, (|Si| —1).

For a polynomial f € R[z1,...,x,] set V(f) = {a € R" | f(a) = 0}; it is called a hypersurface of degree
deg f. Note that the union of m hyperplanes is a hypersurface of degree m. Thus an almost cover
of X C R"™ is a hypersurface satifying X \ {v} C V(f), v € V(f) for some v € X and a polynomial
f that splits into linear factors over R. For an arbitrary hypersurface V(f) satisfying the above two
conditions for X and v we say that it is an almost cover of X: it covers every point of X except v.
Throughout this work we are going to employ the following consequence of Theorem 6.
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Corollary 7. Let 0 # X C B= S x---x S, CR", f € Rlzy,...,xn] andd = (3.7, |Si]) —n—deg f.
If X = B\ V(f), then every hypersurface which is an almost cover of X has degree at least d.

For example, the Alon—Fiiredi theorem follows with the choice S; = {0,1}, X = B, f = 1. For the first
statement in Theorem 1 one can use S; ={1,2,....,n}, X = Py, f =[];c;cj<n(j — 23).

4 Prisms over permutahedra

Here we demonstrate how Theorem 5 can be used via a polynomial invariant to verify Conjecture 2
for prisms over permutahedra. Because of affine invariance it is enough to prove it for the prism whose
bases are II,_1 and —II,,_1 = II,,_1 —(n+1)(e1+- - -+e,), where eq, ..., e, is the standard orthonormal
basis for R"™.

Theorem 8. Every almost cover of P, U (—P,) consists of at least (g) + 1 hyperplanes.

Proof. Let m = (g) and suppose that the hyperplanes H;, 1 < i < m cover every point of P, U (—F,)
except v. By symmetry, we may assume that v € —P,. The hyperplane H; is defined by an equation
fi(z) = a; where f; is a linear form. Consider the Vandermonde polynomial V(z) = [],;(z; — ).
The polynomial

f(x) = V(@) [[(fi(x) = ai))
i=1

of degree n(n — 1) vanishes at every point of the Cartesian product {1,2,...,n}". By Theorem 5 (i),
the coefficient of the monomial [[;", :c’;_l in f must be zero.

On the other hand, the polynomial f attains the value 0 at every point of the Cartesian product
{—1,-2,...,—n}" except v. That is, the polynomial

9(@) = f(—2) = (~DEV@) [[(~filz) - ai)) = V() [[(fi(2) + a))

i=1 i=1
of degree n(n — 1) vanishes at every point of the Cartesian product {1,2,...,n}" except —v. By
Theorem 5 (ii), the coefficient of the monomial ], :1:?_1 in g must be nonzero. Since the degree

n(n — 1) parts of the polynomials f and g are identical, we arrive at a contradiction. O

5 Reflection groups, root systems and Coxeter permutahedra

Let V' be an n-dimensional real euclidean space with orthonormal basis e, ...,e,. Here and in what
follows we identify the vectors of V' with the points of R™. For a nonzero vector o € V we denote
by s, the orthogonal reflection in the linear hyperplane H, orthogonal to a. Thus, so(a) = —a. A
finite reflection group acting on V' is any finite group generated by (a nonempty set of) such reflections.
A root system @ is a set of nonzero vectors satisfying ® N Ra = {—a,a} and s,(®) = @ for every
a € ¢. Crytallographic root systems satisfy an extra integrality condition. The group W (®) (called
Weyl group in the crystallographic case) of orthogonal transformations generated by the reflections s,
a € ¢ is always a finite reflection group in which the reflections exhaust ®. Thus, ® is invariant under
the action of W. Conversely, if W is a finite reflection group, then the unit vectors a for which s, € W
form a root system ® for which W = W (®). If the vectors in ® form one orbit under the action of W,
then W = W(®') if and only if ® = ¢® for some 0 # ¢ € R. On the other hand, if ® is the union of
more than one orbits, then the common length of the vectors in an orbit may be scaled arbitrarily for
each orbit. Thus, if W = Is(m) is the symmetry group of a regular m-gon centered at the origin, then
each corresponding root system has 2m elements, which form one orbit if m is odd and splits into two
orbits of equal size if m is even.
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Let W = W(®) be a finite reflection group. For any point a € R"™, consider its orbit W(a). The
point a is called generic with respect to W, if [W(a)| = |W/|, or equivalently, a ¢ J,cq Ha- In this
case W (a) is the vertex set of a (not necessarily full dimensional) convex polytope IIW (a), referred to
as a W-permutahedron, or a Coxeter permutohedron of type W. Thus, a permutahedron of type Is(m)
is either a regular 2m-gon, or an equiangular 2m-gon with alternating edge lengths (the latter being a
zonotope only for m even), and each such polygon centered at the origin can be obtained as a Coxeter
permutahedron for an appropriate choice of ®. All vertices except one can be covered by m, but not
less lines.

A root system @ is irreducible if it cannot be partitioned into two subsets lying in two nontrivial
orthogonal complements of V', or equivalently, if W (®) is not the direct sum of two proper subgroups
acting as reflection groups on two such subspaces. Theorems 3 and 4 thus read as follows: Fvery almost
cover of a zonotopal permutahedron of type Ia(m) @ Ay requires at least m + 1 hyperplanes. Note that
the group contains exactly m + 1 reflections.

Next consider the reflection group A,_; acting on R", generated by the reflections in the hyperplanes
of equation z;11 = x5, ¢ = 1,...,n — 1. It is isomorphic to the symmetric group S,, and a point is
generic if and only if all its coordinates are different. Thus we have II,,_y = ITA,,_1(1,2,...,n), and
Thm 1 coupled with the remark following its proof in [8] can be read as follows: Every almost cover of
the vertices of a Cozeter permutahedron of type A, _1 consists of at least (g) hyperplanes. The bound
is also sharp. Note that the vectors e; — e; (i # j) form a root system for A,_;, so the bound equals
the number of reflections contained in A, _;. In general, for a reflection group W = W (®), the number
of reflections contained in W is N(W) = |®|/2.

It is not difficult to prove an analogue of Thm 1 for permutahedra of type B. The hyperoctahedral
group B, acting on R" is generated by the reflections in the hyperplanes of equation z;y1 = x;,
i=1,...,n—1, together with the reflection in the hyperplane x; = 0; it contains A, _1 as a subgroup.
Altogether it contains n? reflections in the hyperplanes z; = ex; (1<i<j<n,e==l)and z; =0
(1 <i<n). Thus, N(B,) = n? A point a = (a1,...,a,) is generic if and only if a; # 0 for all 4 and
la;| # |a;| for all i # j. Thus every orbit of a generic point is of the form

By (a) = {Elaw(l) T Enlr(n) |ei = £1,m € Sp}
for some a € R™ with coordinates 0 < a1 < -+ < ay.

Theorem 9. Fvery almost cover of the vertices of a Coxeter permutahedron of type B, consists of at
least n® hyperplanes. This bound is sharp.

Proof. The vertex set of the permutahedron IIB,(a) with 0 < a3 < --- < ay is contained in the
Cartesian product Sy X - - - x.S,, where S; = {a;, —a; | 1 <i < n}, and each point in (S} x---x.5,)\By(a)
is a root of the polynomial

fey = [ (== +w)

1<i<j<n

of degree n(n — 1). According to Corollary 7, every almost cover of B,,(a) consists of at least
n
(Z|S¢|)fnfdegf:2n27n7n(n71) =n?
i=1

hyperplanes. To see that the bound cannot be improved, notice that the hyperplanes x; = a; (i < j),
x; = —a; (i < j) cover every vertex but a = (a1, az,...,a,). O

The study of almost covers of the vertices of permutahedra of type D is more subtle. The group D,, is
the subgroup of index 2 in B,, generated by the reflections in the hyperplanes of equation x;1 = z;,
i =1,...,n — 1, together with the reflection in the hyperplane xo = —x1. Altogether it contains
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n(n — 1) reflections in the hyperplanes z; = ex; (1 <i < j <n, e = =£1). A point a = (a1,...,ay,) is
generic if and only if |a;| # |a;| for all i # j. Thus every orbit of a generic point is of the form

Dn(a) = {€1a7r(1) + -+ Enlr(n) | mES, € E}

for some a € R™ with coordinates —as < a1 < as < --- < a,, where FE is either of the two subsets of
{—1,1}" that consists of all vectors in which the number of —1 coordinates are the same modulo 2.

Theorem 10. FEvery almost cover of the vertices of a Cozeter permutahedron of type D,, consists of
at least n(n — 1) hyperplanes. This bound is sharp in the following sense: if a is a generic point one of
whose coordinates is 0, then Dy (a) has an almost cover of size n(n — 1).

Proof. Tt is very similar to the previous one if the vertices of the permutahedron have a 0 coordinate.
Otherwise we may assume by symmetry that the vertex set is D, (a) with 0 < a; < --+ < a,. In this
case we can apply Corollary 7 with the polynomial

n n
fay=" [ (&j—a(x;+ ) (H zi+]] ai)

I<i<js<n i=1 i=1
of degree n?. O
These results suggest that the following might be true.

Conjecture 11. For a finite reflection group W, every almost cover of the vertices of a permutahedron
of type W consists of at least N(W) hyperplanes.

In contrast, all vertices of a Coxeter permutahedron are contained in a single hypersurface of degree 2,
namely a sphere centered at the origin.

6 Zonotopal permutahedra

For the reflection group W = A,, the orbit of any generic point contains a unique point a =
(aty...,ap+1) With a1 < -++ < ap41. Similarly, for W = B, the orbit of any generic point con-
tains a unique point a = (a,...,a,) with 0 < a; < -+ < a,. For such points it is known that the

Coxeter permutahedron IIW (a) is a zonotope if and only if the coordinates a; form an arithmetic
progression, see [7, Thm 4.13]. We can prove an analogous statement for permutahedra of type D,
and in fact all these results can be viewed as special cases of a more general phenomenon. For a root
system ®, consider any set ®* of positive roots. The Minkowski sum of the line segments [—a/2, a/2],
a € &7, independent of the choice of ®* we denote by Z(®). Then rk(Z(®)) = N(W(®)).

Theorem 12. Let W be a finite reflection group with a corresponding root system ®. Then Z(®) is a
permutahedron of type W.

The reflection group W is called essential if it acts on V' without nonzero fixed points. In general,
V =U®U’, where W is essential relative to U and the orthogonal complement U’ consists of all fixed
points of W.

Theorem 13. A permutahedron 11 of type W is a zonotope if and only if there exists a root system ®
with W(®) =W and a vector uw € U’ such that I1 = Z(®) 4 u.

Although it is not likely that Conjectures 2 and 11 for Z(®) in general can be attacked by our methods,
it is possible to say something more for crystallographic root systems. We call a zonotope Z C R"
special if there exist finite sets Sy,...,5, C R and a polynomial f such that the vertex set X of Z is
(S1 x -+ xS\ V(f) and

tk(Z) < [S1] + -+ [Sul — n — deg f.
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According to Corollary 7, every almost cover of the vertices of a special zonotope Z consists of at
least rk(Z) hyperplanes. Now for an irreducible crystallographic root system ®, Z(®) is special if
the type of ® is A,,,B,,,C,,D,, or Go. Moreover, if V is the sum of the orthogonal subspaces V1, V5
and & = ®; U $y with &; = & NV;, then Z(®P) is the product polytope Z(P1) x Z(P2). In general,
tk(Zy x Z3) = rk(Z1) + rk(Z3) holds for arbitrary zonotopes Zi, Za. Then the following construction
yields further examples for which these conjectures hold.

Theorem 14. If Z1,..., Z are special zonotopes, then so is Z1 X -+ X Zj,.

For the crystallographic root system ® of type Fy, the vertex set of Z(®) splits into three Bs-orbits.
We can construct an almost cover of size 24 = rk(Z(®)), but we do not see if our method suits a proof
that this is best possible.

7 Conclusion

We investigated how the polynomial method can be used to study almost covers of vertex sets of
zopotopes and Coxeter permutahedra. In the meantime, Conjecture 2 was refuted by Géabor Damaésdi,
whereas Conjecture 11 was verified by Péter Frenkel.
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Abstract

The history of studies on tilings of the sphere can be traced back to Plato (5 Platonic solids)
and Archimedes (13 Archimedean solids). We study edge-to-edge monohedral tilings of the sphere.
The classification of such tilings was pioneered by D. Sommerville in 1923. Significant progress was
made in the past decades. However, the remaining cases have been the most difficult to classify.
They are also of the utmost importance as they give rise to the majority of the tilings. We have
recently classified all of them and hence completed the whole classification celebrating its centenary.
The process involved new techniques ranging from combinatorics, geometry, algebra and number
theory. All the tilings can be classified into 3 types: Platonic type, earth map type, and sporadic
type. The full classification gives us a comprehensive understanding of their structural relations.

1 Introduction

The tilings in our studies cover the surface of the sphere without holes and overlaps. A tiling is
monohedral if all tiles are geometrically congruent to a fixed polygon. The polygon, assumed to have
geodesic arcs as edges, is called the prototile. By [8, Lemma 1], the prototile of a monohedral tiling of
the sphere must be simple, i.e., its boundary is a simple closed curve. The tilings are also edge-to-edge,
which means that no vertex of a tile lies in the interior of an edge of another tile (for example, see
Figure 1). We also assume that the degree of a vertex in a tiling is at least 3 to avoid trivial examples
by artificially adding extra vertices to edges and the complications inflicted by that. For simplicity, by
tiling we mean edge-to-edge monohedral tiling of the sphere satisfying the above assumptions.

T ml

Figure 1: Edge-to-edge v.s. non-edge-to-edge

By [11, Proposition 4], the prototile in a tiling is either a triangle, a quadrilateral, or a pentagon. We
call the prototiles resulting in tilings the admissible prototiles. From [4, 10] and [12], they are shown in
Figure 2) with notations for their edge combinations. For example, a*b means 4 a-edges and 1 b-edge
in a pentagon. Edges with different labels are assumed to have different lengths. In a*, the notation e
(and o) denotes the opposite angles of equal value, and e will be used in Figures 5 and 7.

D. Sommerville [9] first studied the tilings with triangle prototiles in 1923. H. L. Davies gave an
outline for the classification [6], which was completed by Y. Ueno and Y. Agaoka [10] in 2002. H. H. Gao,
N. Shi and M. Yan [8] classified the minimal case for pentagon prototiles in 2013 and significant progress
has since been made by Y. Akama, E. X. Wang and M. Yan [1, 2, 12, 13] in the quadrilateral and the
pentagon direction. The remaining and the hardest problems have prototiles with edge combinations
a’be, a®b and a*b. By overcoming these challenges [3, 4, 5], we present the main result below.

“Email: hmcheungae@connect.ust.hk.
tEmail: hoi@connect.ust.hk. Author was supported in part by the Li Po Chun Charitable Trust Fund scholarship.
fEmail: mamyan@ust.hk. Research was supported by Hong Kong RGC General Research Fund 16303515 and 16305920.
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A-prototiles: %b\ a’b a’
(] [ ]

O-prototiles: a?be a?b? a3b at

[ ] o
O-prototiles: @ @ @ @

Figure 2: The admissible prototiles

2 Main result

Theorem 1. The edge-to-edge monohedral tilings of the sphere are
1. Platonic type: Platonic solids P, = Py, Ps, Py, P12, Pog and subdivisions on P, below

o Simple subdivision S;Pg of the cube fori=1,...,7;

Triangular subdivision T Py ;

Barycentric subdivision BPy;

Quadrilateral subdivision QPk;

Quadricentric subdivision CPy;

Pentagonal subdivision P Pi;

Double pentagonal subdivision DP;;
2. Earth map type:

e 3 infinite families of A-tilings: Eal (with reductions EfAl,Eil), EA2 and EA3;
e 2 infinite families of O-tilings: Eql (with reductions Eél,Eé(l,Egl) and Eo2;
o 2 infinite families of O-tilings: Ex1 and Ex2;

3. Sporadic type: Sia0l, S1601, S1602, S1603(and F'S1603), S1604, S3605, S36016, S0y 5
4. Modifications:

e Flip F':
Platonic - FBPg, FQP(;, FQPg, FPPg, F1PP20, FQPPQ(),'
FEarth map N-tilings - FEAT where i =1,2,3;
Farth map O-tilings - FEql, F1Eq2, Fo En2;
Earth map Q-tilings - F1Exi, FaEqi fori=1,2, and FSE~2, FYE~2;
Sporadic - F'S1¢03;

o Rearrangement R: REQ].

The distinguishing features of tilings are best demonstrated in plane drawings. Platonic type tilings
are shown in Figures 3, 4, 5 and 6, where the open ends of the outmost edges in a drawing converge to
a single vertex. Earth map type tilings are shown in Figures 7 and 8, where the vertical edges in the
top row of each drawing converge to a vertex (the “north pole” ) and those in the bottom converge
to another (the “south pole”), and the left and right boundaries are identified. Sporadic tilings are
shown in Figures 9 and 10. Two examples of modifications on QP and on Eél are shown respectively
in Figures 11 and 12. The readers are referred to [4] and [5] for detailed discussion on modifications,
including the most sophisticated ones.
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Barycentric subdivision B P

B

Quadrilateral subdivision Q Px

OB B

Quadricentric subdivision C P,

NA

N7
N

Figure 5: Subdivisions of Platonic solids T'P,, Q Py, BP,, and CP,

We highlight some interesting facts before the sketch of the proof. First, Py is the only Platonic
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PP

Figure 8: Earth map type O-tilings

solid that gives a rigid tiling. Second, the earth map type tilings (or earth map tilings) resemble the
earth map — hence the name. Notably, the poles of earth map tilings are the vertices with negative
combinatorial curvature (see definition in [7]). Between them, a tiling is formed by repeating copies
of a timezone (shaded). Third, in Sig03 and FS1603, one angle is actually 7. Hence they are also
non-edge-to-edge A-tilings.

Sketch of proof. The complete classification is obtained by determining
1. the admissible prototiles, and

2. the corresponding admissible vertices in terms of angle combinations for each admissible prototile.
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Vi EH e @

Sio0l Sie0l S1602 S1603 FSi603
Sie04 S3605 S3606

Figure 9: Sporadic U-tilings S1201, S160l, S1602, S1603, F'S1603, S16004, S3605, S3606

S160

Figure 10: The sporadic O-tiling S50y

flip about F'
\

F ~
Py QPFg FQPs

Figure 11: Platonic type tiling from subdivision to modification: Py — QPs — FQP;

C6&s

Bkl FEsA1 FE;A1 REZ 1

Figure 12: An example of modifications — earth map tiling Eé%ml, two tilings from flip modification
F EQL‘SDI and a rearrangement RE{%DI

Such a set of vertices satisfies various combinatorial and geometric contraints. We call it anglewise-
vertex combination (or AVC for short). The tiling in the first picture of Figure 13 has AVC = {a~d, 5" }.

The knowledge of AVC is pivotal: it serves as the instruction of how to put the tiles together. For
example, suppose that we have AVC = {a7d, 33} for the prototile a®h. Then every vertex is ayd or
(3. The notation ayd means that a vertex has one «, one v and one § (see first picture, Figure 13)
whereas 32 means that a vertex has three 4’s. In the second picture, a vertex ayd uniquely determines
the three incident tiles (1),(2),(3). Similarly, we then determine asz7 --- = ayé and v36 - - - = ayd and
Bg---,Bi1Pa--- = 33. Repeating such process, we uniquely determine the tiling given by the cube P
in the third picture. The same argument works for AVC = {a~d, 5"} with any fixed integer n > 3.
The tiling obtained is indeed EA1 in the first picture where n = 3 gives P (shaded).
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e = 3" (north pole)
B g 5 §
N
H\ C@? “ | T 7
DY@ o
7 lw s (i
Ps

e = 3" (south pole) Vertex o = avd Ps

Figure 13: Construction of the tiling Fnl with prototile a3b and AVC = {a~6, 3"}

By edge configurations and the existence of vertices of certain degrees, we obtain the prototiles in
Figure 2. See [4, Lemma 1] and [12, Lemma 9] for further details.

For each admissible prototile, it takes both combinatorial and geometric arguments to determine
the AVCs. It boils down to the study of the angles in a tiling. Powerful tools, such as discharging
method, convexity analysis, spherical trigonometry, Grobner basis, trigonometric Diophantine analysis
and integer linear programming, are implemented for this purpose. OJ

The full classification of the A-tilings can be see in [4, 10], the full classification of the [-tilings can
be seen in [4], and the full classification of O-tilings is the collective effort of [1, 2, 5, 8, 12, 13]. An
alternative classification of tilings with ab prototile via a noval approach is given in [3].
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Abstract

In this work, we explore when the Betti numbers of the coordinate rings of a projective monomial
curve and one of its affine charts are identical. Given an infinite field k£ and a sequence of relatively

prime integers ag = 0 < a; < --- < a, = d, we consider the projective monomial curve C C P}’ of
degree d parametrically defined by z; = u®v?~% for all i € {0,...,n} and its coordinate ring k[C].
The curve C; C A} with parametric equations x; = ¢t* for ¢ € {1,...,n} is an affine chart of C and

we denote by k[C;] its coordinate ring. The main contribution of this paper is the introduction of
a novel (Grobner-free) combinatorial criterion that provides a sufficient condition for the equality
of the Betti numbers of k[C] and k[C;]. Leveraging this criterion, we identify infinite families of
projective curves satisfying this property.

Introduction

Let k£ be an infinite field, and k[x] := k[z1,...,2,] and k[t] := k[t1,..., 1] be two polynomial rings

over k. Given B = {b1,...,b,} C N™ a set of nonzero vectors, each element b; = (b;1,...,biy,) € N
corresponds to the monomial t% := tl{“ .-+ tbim € k[t]. The affine toric variety X C A7 determined by
B is the Zariski closure of the set given parametrically by x; = u(f“ --ubim for alli =1,...,n. Consider

Sp = (bl,...,bn>:{a1b1+-~-+anbnla1,...,anEN}CNm,

the affine monoid spanned by B. The toric ideal determined by B is the kernel Iz of the k-algebra
homomorphism ¢ : k[x] — k[t] induced by x; ~— tb. Since k is infinite, one has that Iz is the
vanishing ideal of Xz and, hence, the coordinate ring of Xz is (isomorphic to) the semigroup algebra
k[Sp] := Im(pp) ~ k[x|/Ig. The ideal Iz is an Sp-homogeneous binomial ideal, i.e., if one sets the
Sp-degree of a monomial x* € k[x] as degg, (x%) := a1b1 + - + anb, € Sp, then I is generated by
Sp-homogeneous binomials. One can thus consider a minimal Sp-graded free resolution of k[Sg| as
Sg-graded k[x]-module,
F:0—F,— - — Fy — k[Sg]| — 0.

The projective dimension of k[Sp] is pd(k[Sp]) = max{i|F; # 0}. The i-th Betti number of k[Sg]
is the rank of the free module F;, i.e., B;(k[Sp]) = rank(F;); and the Betti sequence of k[Sp| is

*This work is supported in part by the grant PID2022-137283NB-C22 funded by MCIN/AEI/10.13039/501100011033
and by ERDF “A way of making Europe.”

TEmail: iggarcia@ull.edu.es.
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$Email: mario.gonzalez.sanchez@uva.es. T. A. thanks financial support from European Social Fund, Programa Oper-
ativo de Castilla y Ledn, and Consejeria de Educacion de la Junta de Castilla y Leon.
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(Bi(k[SB]); 0 < i < pd(k[Sg])). When the Krull dimension of k[Sg| coincides with its depth as k[x]-
module, the ring k[Sp] is said to be Cohen-Macaulay. By the Auslander-Buchsbaum formula, this
is equivalent to pd(k[Sg]) = n — dim(k[Sg]). When k[Sg| is Cohen-Macaulay, its (Cohen-Macaulay)
type is the rank of the last nonzero module in the resolution, i.e., type(k[Sg]) := Bp(k[SB]) where
p = pd(k[Sg]).

Now consider d € Z' and ap := 0 < a1 < --- < a, = d a sequence of relatively prime integers.
Denote by C the projective monomial curve C C P;* of degree d parametrically defined by x; = udipd—a
for all i € {0,...,n}, i.e., C is the Zariski closure of

{(u“"vd_ao Cee it u“”vd_a”) ePl(u:v) € P,lﬂ}

Taking A = {ag,...,a,} C N? with a; = (a;,d — a;) for all i = 0,...,n, one has that I4 is the
vanishing ideal of C, and the coordinate ring of C is the two-dimensional ring k[C] = k[zo, ..., xn]/ L4,
where § = Sy denotes the monoid spanned by A. The projective monomial curve C is said to be
arithmetically Cohen-Macaulay if the ring k[C| is Cohen-Macaulay.

The monomial projective curve C has two affine charts, C; = {(u®,...,u*) € Al |u € k} and
Co = {(vi=a0 pd=a  pd=an-1) € AR |y € k}, associated to the sequences a; < --- < a, and
d—an_1 < - <d—a; <d—ap, respectively. The second sequence is sometimes called the dual of the
first one. Denote by S := S4, the numerical semigroup generated by A; = {a1,...,a,}. The vanish-
ing ideal of C; is 14, C k[x1,...,zy], and hence, its coordinate ring is the one-dimensional ring k[C1] =
klx1,...,zyn]/I4,. Moreover, I 4 is the homogenization of I 4, with respect to the variable zy. Similarly,
denoting by Sy := S4, the numerical semigroup generated by Ay := {d — ag,d — a1, ...,d — ap—_1}, the
vanishing ideal of Cq is 4, C k[zo,...,Zn_1], its coordinate ring is k[C2] = k[xo, ..., Tn_1]/L4,, and I4
is the homogenization of I4, with respect to z,.

One has that §;(k[C]) > Bi(k[C1]) for all i, and the goal of this work is to understand when the
Betti sequences of k[C] and k[Ci] coincide. A necessary condition is that k[C] is Cohen-Macaulay.
Indeed, affine monomial curves are always arithmetically Cohen-Macaulay while projective ones may
be arithmetically Cohen-Macaulay or not. Thus, pd(k[C]) = pd(k[Ci]) if and only if C is arithmetically
Cohen-Macaulay. In Theorem 5, which is the main result of this work, we provide a combinatorial
sufficient condition for having equality between the Betti sequences of k[C] and k[C1] by means of the
poset structures induced by S and S; on the Apery sets of both S and S;. In Propositions 9 and 11,
we use our main result to provide explicit families of curves where f;(k[C]) = B;(k[C1]) for all i.

The motivation of this work comes from [7], where the authors obtain a sufficient condition in terms
of Grobner bases to ensure the equality of the Betti sequences.

The computations in the examples given in this paper are performed using Singular [4].

1 Apery sets and their poset structure

Let d € ZT and a9 := 0 < a; < --- < a, = d be a sequence of relatively prime integers. For
each i = 0,...,n, set a; := (a;,d — a;) € N2, and consider the three sets A; = {a1,...,a,},
Ay = {d,d —a1,...,d — ap—1} and A = {ay,...,a,} C N’ We denote by C C P}* the projective
monomial curve defined by A as defined in the introduction, and by C; and Cs its affine charts. Con-
sider §; and S the numerical semigroups generated by A; and As respectively, and S the monoid
spanned by A that we call the homogenization of S; (with respect to d).

As already mentioned, k[S1] and k[Ss] are always Cohen-Macaulay, while k[C] can be Cohen-

Macaulay or not. There are many ways to determine when a projective monomial curve is arith-
metically Cohen-Macaulay; see, e.g., [2, Cor. 4.2], [3, Lem. 4.3, Thm. 4.6] or [6, Thm. 2.6]. We give
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some of them in Proposition 1, but let us previously recall the notion of Apery set since it is involved
in some of those charaterizations.

For i = 1,2, the Apery set of S; with respect to d is Ap,; :={y € S;|y —d ¢ S;}. Since ged(A;) =1,
we know that Ap, is a complete set of residues modulo d, i.e., Ap; = {ro = 0,r1,...,74_1} and
Apy, = {to = 0,t1,...,tq—1} for some positive integers r; and ¢; such that r;, = ¢; =i (mod d) for all
i=1,...,d —1. One can also define the Apery set of S as APs:={y €S|y —ay ¢ S,y —a, ¢ S}.
Note that this set has at least d elements by [5, Lem. 2.5].

Proposition 1. The following assertions are equivalent:

(a) C is arithmetically Cohen-Macaulay.

(b) APgs has exactly d elements.

(c) APs = {(0,0)} U{(ri,tq—) |1 <i < d}.

(d) Foralli=1,...,d—1, (ri,tq—;) € S. In other words, if g1 € Ap;, g2 € Apy and ¢1 + g2 =0
(mod d), then (q1,q2) € S.

(e) If s € 72 satisfiess+ag € S ands +a, €S, thens € S.

In order to compare f3;(k[C]) and f;(k[C1]) for all i, we will relate in Theorem 5 the Apery sets
Ap,; and APg with the natural poset structure that both have and that we now define. For i = 1,2,
(Ap;, <;) is a poset, where <; is given by y <; z <= z —y € §;. Similarly, (APg, <gs) is a poset for
<sdefined by y <sz<=z—-y€S.

Since § C 81 x Sy, it follows that if (y1,y2) <s (21, 22), then y; <; z; for i = 1,2. Using Proposition
1, one can prove that the poset structure of (APg, <gs) is completely determined by those of (Ap;, <)
and (Ap,, <2) when C is arithmetically Cohen-Macaulay.

Proposition 2. If C is arithmetically Cohen-Macaulay, then for all (y1,y2), (z1,22) € APs,
(y1,92) <s (21,22) < y1 <1 21 and y2 <2 2.
Let us recall some notions about posets that will be needed in the sequel.
Definition 3. Let (P, <) be a finite poset.

(a) Fory,z € P, we say that z covers y, and denote it by y < z, if y < z and there is no w € P such
that y < w < z.

(b) We say that P is graded if there exists a function p : P — N, called rank function, such that
p(z) = p(y) + 1 whenever y < z.

As the following result shows, the poset (APg, <s) is always graded. Since (Ap;, <;) has a minimum,
whenever it is graded, the corresponding rank function is completely determined by the value of the
rank function in the minimum, which we will fix to be 0. In the following proposition, we characterize
the covering relation in Ap; and APgs and describe the rank functions of (APs, <s), and of (Ap;, <;)
when it is graded.

Proposition 4. (a) If y,z € Ap,, then y <1 z if and only if z =y + a; for some minimal generator
a; of 81 such that a; # d. Therefore, if Ap, is graded and p; : Ap; — N denotes the rank
function, for any y € Apy, p1(y) is the number of elements involved in any writing of y in terms
of minimal generators of Si.

(b) If y = (y1,vy2), 2 = (21,22) and y,z € APg, then'y <s z if and only if z =y + a; for some
i € {1,...,n — 1}. Therefore, APs is graded by the rank function p : APs — N defined by
p(y1,y2) = (1 +y2)/d.
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2 Betti numbers of affine and projective monomial curves

Recall that I4, C k[z1,...,x,] is the vanishing ideal of C; and I4 C k[zo,...,x,] is the vanishing ideal
of C. When C is arithmetically Cohen-Macaulay, pd(k[C]) = pd(k[C1]). Moreover, by Proposition 1,
in this case, one has that |[APs| = |Ap;| = d. The main result in this section is Theorem 5 where we
give a sufficient condition in terms of the poset structures of the Apery sets Ap; and APgs for the Betti
sequences of k[C1] and k[C] to coincide.

Theorem 5. If (APs, <s) ~ (Ap;, <1), then B;(k[C]) = Bi(k[C1]) for alli.
Note that the converse of this result is far from being true, as shown in Example 6.

Example 6. For the sequence 1 < 2 < 4 < 8, one has that both k[C1] and k[C] are complete intersections
with Betti sequence (1,3,3,1). However, the posets (Ap;, <1) and (APs,<s) are not isomorphic since
<1 is a total order on Ap,, while <s is not.

In order to compare the two posets APs and Ap,, one can use the following result.
Proposition 7. The following two claims are equivalent:

(a) The posets (Ap,,<1) and (APs,<s) are isomorphic;
(b) k[C] is Cohen-Macaulay, (Ap;,<1) is graded, and {ai,...,an—1} is contained in the minimal

system of generators of Sy.

Note that Ap; can be a graded poset even if (Ap;,<;) and (APgs, <g) are not isomorphic as the
following example shows.

Example 8. For the sequence a1 =5 < as = 11 < ag = 13, the Apery set of the numerical semigroup
S1 = (a1, a9,a3) is Ap; = {0,27,15,16, 30, 5, 32, 20,21,22,10,11,25}. This Apery set is graded with
the rank function p1 : S — N defined below (see Figure 1):

e p(0

e p1(5
e p1(10) = p1(16) = p1(22) = 2,
e p1(15

(
e p1(25) =
e p1(30) =

Moreover, since APgs has 16 elements, k[C] is not Cohen-Macaulay, and hence (Ap,,<1) and (APs, <s)
are not isomorphic by Proposition 7.

3 Examples of application

In Propositions 9 and 11, we provide some sequences a1 < --- < a, for which the condition in Theorem
5 is satisfied. Let us start with arithmetic sequences, i.e., sequences a; < --- < a, such that a; =
aj + (i — 1)e for some positive integer e with ged(ag, e) = 1. For this family, we refine [7, Cor. 4.2] that
considers a1 >n — 1.

Proposition 9. Let a1 < ... < a, be an arithmetic sequence of relatively prime integers. Then,
(APs, <s) ~ (Ap;, <1) if and only if a; > n — 2. Therefore, if a1 > n — 2, the Betti sequences of k[C1]
and k[C] coincide.
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(30,48)

(25, 40)f (43,22)

(20,32)] (38,14)

(15,24)f (33,6)

(10,16)f (22,4)

(5,8) (11,2)

(0,0)

Figure 1: The posets (Ap;, <i) (in blue) and (APg, <s) (in black) for §; = (5,11, 13).

(0,0)

Figure 2: The posets (Ap;, <1) (in blue) and (APgs, <s) (in black) for S = (5,6,7,8,9,10).
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Example 10. For the sequence 5 < 6 <7 < 8 <9 < 10, one has that ay =5 > 4 =n — 2. Therefore,
the Apery sets (Apy,<1) and (APgs,<s) are isomorphic. Hence, by Theorem 5, the Betti sequences
of k[C1] and k[C] coincide. One can check that both are (1,11,30,35,19,4). The posets (Ap;,<1) and
(APs, <s) in this ezample are shown in Figure 2.

In [1, Sect. 6], the authors studied the canonical projections of the projective monomial curve C
defined by an arithmetic sequence a; < --- < a, of relatively prime integers, i.e., the curve m,(C)
obtained as the Zariski closure of the image of C under the r-th canonical projection m, : P} --» IP’Z_I,
(po:--:pn)F=>(Po: - Pr—1:Drg1: - Pp). We know that 7,.(C) is the projective monomial
curve associated to the sequence a1 < -+ < ap_1 < @py1 < -+ < ap.-

In Proposition 11, for any r € {2,...,n — 1}, we consider A; = {a1,...,a,} \ {a,}, the numerical
semigroup S; = S4,, and its homogenization S, and we characterize when the posets (Ap;, <;) and
(APgs, <s) are isomorphic.

Proposition 11. Consider a1 < ... < a, an arithmetic sequence of relatively prime integers with
n > 4, and take r € {2,...,n —1}. Set A} := {a1,...,a,} \ {a,}, and let S; be the numerical
semigroup generated by Ay, and S its homogenization. Then,

a1 >n—2 and a1 # n, ifr=2,
(APs,<s) ~ (Ap,<1) <= ar>nandr<a—n+1, if3<r<n-—2,
ap >n—2, ifr=n-—1.

Consequently, if the previous condition holds, then [3;(k[C1]) = Bi(k[C]), for all i.

Example 12. For the sequence 9 < 10 < 11 < 12 < 13, the Betti sequences of k[Ci] and k[C] coincide
by Proposition 9. Indeed, it is (1,10,20,15,4) for both curves. The parameters of this arithmetic
sequence are a; =9, e = 1 and n = 5. Hence, the Betti sequences of k[n,(C1)] and k[m,(C)] coincide
for r = 2,3,4 by Proposition 11. One can check that the Betti sequence of k[ma(C)] and k[m4(C)] is
(1,5,6,2), and the Betti sequence of k[ns(C)] is (1,8,12,5).
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The flexibility among 3-decompositions
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Abstract

The 3-decomposition conjecture, postulated by Hoffmann-Ostenhof in 2011, is a major open
question about the structure of cubic graphs: Can the edge set of every cubic graph be decomposed
into a spanning tree, a disjoint union of cycles, and a matching? To date, the conjecture remains
wide open. Towards a deeper structural understanding of 3-decompositions, we investigate the set of
all 3-decompositions of a graph as a whole. On the one side, we provide a graph class that displays
extremal behaviour: up to isomorphism, only one 3-decomposition exists. On the other side, we
show that in general, 3-decompositions are more flexible. This contrasts the existing approaches
which focus on the construction of precisely one decomposition of the considered graph. We exploit
these insights towards a verification of the 3-decomposition conjecture on Bilu-Linial expanders.

1 Introduction

All graphs in this paper are simple and finite. A 3-decomposition of a cubic graph G is a triple (T',C, M)
of subgraphs of G where T is a spanning tree of G, C is 2-regular, and M is a matching such
that {E(T'), E(C), E(M)} is a partition of E(G). (See Figure 1 for examples of 3-decompositions.) The
3-decomposition conjecture, postulated by Hoffmann-Ostenhof [6], is a central open question about the
structure of cubic graphs.

3-Decomposition Conjecture. Fvery connected cubic graph has a 3-decomposition.

The 3-decomposition conjecture has received great interest, and numerous results verify the con-
jecture on subclasses (e.g., planar [7], treewidth-3 [5], pathwidth-4 [2], and claw-free graphs [1]). Li
and Cui [10] proved that the following weaker variant of the 3-decomposition conjecture is true: Every
connected cubic graph can be decomposed into a spanning tree, a disjoint union of cycles, and a disjoint
union of paths of length at most 2. There is ample literature on 3-decompositions when the considered

ST ENSS INSS:

Figure 1: 3-decompositions of Ky, K33, and three distinct 3-decompositions of the tricorn graph Gr.
Spanning tree edges are straight and green, cycle edges are wavy blue, and matching-edges are zigzag-
shaped and orange. It holds minyarcu(Gr) = 0 and maxyarcn(Gr) = 3.

*Email: heinrich@mathematik.tu-darmstadt.de. The research leading to these results has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (En-
gageS: grant agreement No. 820148).
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graph G admits one of the following two extremes: a Hamiltonian path (a tree maximizing the number
of degree-2 vertices) or a HIST [6] (a spanning tree which is homeomorphically irreducible, i.e., free of
degree-2 vertices). However, little is known about the structure of the set of all 3-decompositions of
a cubic graph. Towards a deeper structural understanding of cubic graphs we analyze the set of all
3-decompositions of a graph (class). We focus on the following three questions.

Q 1. Are there graphs with a unique 3-decomposition?

Consider the two graph invariants

minyarcu(G) = min{||M||: (T,C, M) is a 3-decomposition of G}, and
maxyarch(G) = max{||M||: (T,C, M) is a 3-decomposition of G},

where || - || denotes the size (i.e., the number of edges) of a graph.

Q 2. Which graphs (or graph classes) are extremal with respect to minyjarcy and maxyaTcH, respec-
tively? How flexible is the set of all 3-decompositions of a graph with respect to the number of matching
edges it contains?

Q 3. How can we exploit the observed flexibility among 3-decompositions towards proving the 3-decom-
position conjecture?

Our contribution. We positively answer Question 1 by providing an infinite class of graphs with
the property that each graph in the class has a unique 3-decomposition up to isomorphism (Theorem 4).
It is noteworthy that all graphs in this class have a HIST and it is known that a HIST of a cubic graph
naturally corresponds to a 3-decomposition [6]. Hence, we further investigate for which graphs there
exist HIST-free 3-decompositions. Assuming the 3-decomposition conjecture to hold, we prove that
every graph of connectivity 2 has a HIST-free 3-decomposition (Theorem 5). We used the computer
to verify that apart from K4 and K33 every 3-connected cubic graph of order at most 20 has a 3-
decomposition without a HIST (Theorem 6).

Concerning Question 2, we prove that there exists a family of graphs (H,,)nen with minyaren(Hy) =0
for all n € N and lim,,_, oo maxyarcn(Hy) = oo (Proposition 8). We complement this result by proving
the existence of two other graph families (G,,)nen and (G),)nen that satisfy lim,, o maxyarcn(Gr) = 0
(Theorem 4) and lim,,_, minyarcn(G),) = oo (Proposition 7).

We give a partial answer to Question 3 in Section 5 where we highlight that the flexibility of 3-
decompositions can be exploited in order to provide a tighter analysis of 3-decompositions of Bilu-
Linial expanders. This broadens our understanding of 3-decompositions since expander graphs show
completely different behavior compared to the previously studied classes.

Due to space restrictions, some of the proofs are omitted or shortened to proof sketches.

Further related work. The recent results on the 3-decomposition conjecture are surveyed in the
introduction of [2]. Hoffmann-Ostenhof, Noguchi, and Ozeki studied the existence of HISTs in cubic
graphs [8]. Deciding whether a graph allows for a HIST is in general an intractable problem, which
remains intractable even if the input is restricted to the class of cubic graphs [4].

2 Preliminaries

For two integers a and b we set [a,b] == {a,a+1,...,b}. We denote the path of order n by P,, the
complete graph of order n by K, and the complete bipartite graph with one part on n vertices and
the other part on m vertices by K, ,,. The K, is a graph obtained from K by subdividing precisely
one edge. Analogously, the K‘:g’g is obtained by subdividing an edge of the K3 3. If u and v are vertices
of a tree T', then uT'v denotes the unique u-v-path in 7. For a graph G and an edge subset E' C E(G)
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we set G[E’] to be the graph with edge set E’ and vertex set {v € V(G): Ju € V(G): wv € E'}. A
non-empty graph G is k-connected (k-edge connected) if for each two distinct vertices u and v of G there
are at least k internally vertex-disjoint (edge-disjoint) u-v-paths in G. The maximum number k € N
such that G is k-connected (k-edge connected) is the connectivity (edge connectivity) of G. In contrast
to general graphs, the connectivity and the edge-connectivity of a cubic graph are equal. If E' C E(G)
such that G[E(G) \ E’] has more components than G, then E’ is an |E’|-edge separator, otherwise
we call G[E'| non-separating. Let E' C E(G). If there exists a bipartition {U, W} of V(G) such
that B/ = {uw € E(G): uw € Uyw € W}, then E' is a cut set of G. A bridge is a 1-edge separator. If G
is cubic and has a 3-decomposition (7, C, M), then G is 3-decomposable.

Lemma 1. Let G be a cubic graph with a 3-decomposition (T,C, M).
1 |G|l = 3/2|V(G)] and |Cl| + [|M]| = [|G]| - [|T| = V(&2 + 1 .
2. C and M are non-separating subgraphs of G.
3. Each vertex v € V(Q) is either a degree-3 vertex of T, or a degree-2 vertex of T and contained
in M, or a degree-1 vertex of T and contained in C. In particular, ||C|| > 3

Observation 2 (Reformulation of [8], Theorem 2). If G is a cubic graph, then minyarcu(G) = 0
if and only if there exists a HIST T of G, which is the case precisely if (T,G[E(G) \ E(T),0]) is a
3-decomposition of G.

Lemma 3. If G is a 3-decomposable graph and ¢ := min{||C||: C is a non-separating cycle in G}, then

0 S minMATCH(G) S maxMATCH(G) S 1/2’V(G)‘ + 1—-7 S 1/2’V(G)’ — 2.

3 Graphs with unique 3-decompositions

In this section, we tackle Question 1. In fact, already among the smallest cubic graphs there are
two examples of graphs with a unique 3-decomposition up to isomorphism: K4 and K33. The Ky
decomposes into a K3, a 3-cycle, and an empty matching; the K33 decomposes into a tree known
as the H-graph, a 4-cycle, and an empty matching (see Figure 1). Observe that, in accordance with
Observation 2, each of the two trees is a HIST. We argue that the decompositions are unique: By
Lemma 1.3 each of the decompositions contains a cycle. Observe that a shortest cycle in Ky is a
3-cycle and each two 3-cycles of K4 can be mapped to each other by an automorphism of Ky. The
remaining edges form a K 3. In particular, no larger cycle can be part of a 3-decomposition of K4. The
uniqueness of the decomposition of K33 can be proven in analogy to this. In fact, there are infinitely
many graphs with this property:

Theorem 4. There exists an infinite family G of graphs which have precisely one 3-decomposition up
to isomorphism. Further, minyaron(G) = maxyarcu(G) =0 for all G € G.

Proof sketch. The class T of homeomorphically irreducible subcubic trees contains infinitely many
non-isomorphic trees. Let G be the family of cubic graphs obtained by the following construction:
Let T € T. For each leaf ¢ of T let K* be either a copy of K, or K3 ;3. Take the disjoint union of 7" and
the graphs in {K*: degy(¢) = 1} and identify the degree-2 vertex of K* with £ for each leaf £ of T. The
ingredients for the uniqueness proof are as follows: For a graph G € G all edges of the corresponding
tree T € T are bridges of the construction, further each appended K4 or K2373 has (up to isomorphism)
precisely one non-separating cycle. The resulting decomposition is free of matching-edges. O

The situation observed at the beginning of this section (the only option of obtaining a 3-decomposition
corresponds to a HIST) never occurs in the setting of connectivity-2 graphs if the 3-decomposition con-
jecture holds:

Theorem 5. If the 3-decomposition conjecture holds, then every cubic graph with connectivity 2 has a
3-decomposition with a non-empty matching.
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Proof. We show the following stronger claim: If the 3-decomposition conjecture holds, then every
connected cubic graph which has a 2-edge separator of non-incident edges has a 3-decomposition with
a non-empty matching. The theorem follows immediately from this claim since if two incident edges
e1, es form a 2-edge separator of a cubic graph, then the unique edge incident to e; and es is a bridge
(and, hence, the connectivity is at most 1). Assume that the 3-decomposition conjecture holds and
let G be a cubic graph with a HIST T and a 2-edge separator of non-incident edges {ujvy, ugve}. The
graph G \ {ujv1,ugvs} has precisely two components G’ and G”.

U1 V1 U1 ; I I ; U1
>
/ I
G - el G H - el T x G
. o o .
Uz V2 U2 V2

Set C' = G[E(G) \ E(T)] and consider the 3-decomposition (T, C, () of G. Since {ujvi,usve} is a
separator we obtain {ujvi,ugve} N E(C) = () and, hence {ujvy,usve} € E(T). Precisely one of the
following situations occurs: u1Tus € G’ or viTve C G”. We may assume that u;Tus C G’.

We construct a graph H as follows: add two new vertices 2’ and z” to G, remove ujvy, and add
the edges w1z’ and z”v;. Take the disjoint union of this graph with two copies K’ and K” of K,
and identify 2’ (resp. z”) with the degree-2 vertex of K’ (resp. K”). The resulting graph H has a
3-decomposition (Ty,Cp, M) by assumption. Since wjv; and ugve are not incident ||ujTus| > 1
and we may choose an edge e € F(uiTuz). Now, merge the 3-decomposition induced by the HIST
and the one of H together to one for GG. Take the decomposition from H in G” and in G’ a
slight modification of the decomposition induced by the original HIST: Remove the edge e from
the spanning tree part of T in G’ to disconnect u; and ws in the spanning forest in G’ and in-
stead connect them via the spanning tree Ty in G”, which connects vy and vo. We may add e
to the matching since the decomposition used on G’ so far had an empty matching. More for-
mally (TNG)U(Tyg NG")U (ug,v1) U (ug,v2) \ {e}, (CNGYU(CyNG"),{e}U(MygnG")) is a 3-
decomposition with a non-empty matching for G. O

Theorem 6. Apart from K4 and K33, every 3-connected cubic graph of order at most 20 has a 3-
decomposition with a non-empty matching".

4 Flexibility among 3-decompositions
Proposition 7. For every n € N there exists a 2-connected cubic graph G, with minyarcn(Gh) = n.

Proof sketch. We refrain from giving a technical description of G), and refer to Figure 2 for the con-
struction and a 3-decomposition of G!, with precisely n matching-edges. In particular, the graph G,
is 3-decomposable and minyiarcu(G) < n. Assume that (T, C,, M,,) is a 3-decomposition of GJ,.
Observe that the only non-separating cycles in G/, are the four triangles (in Figure 2: two triangles
on the left and two triangles on the right of the drawing). At most one of the two left triangles and
at most one of the two right triangles can be contained in C,, since C,, is a disjoint union of separat-
ing cycles by Lemma 3. Further, since C), is non-empty we obtain ||Cy| € {3,6}. From Lemma 1
follows ||Cy,|| + || My|| = n + 6 and with this, ||M,| > n. O

Theorem 8. For every odd number n € N there exists a cubic graph H, with minyarcn(Hy) =0
and maxyarcu(Hy) =n.  Further, there exists a 3-decomposition of H, with n — 3l edges in the
matching for every | € [0, (n+1)/4].

! https://gitlab.rlp.net /obachtle/reductions-for-the-3-decomposition-conjecture, March 2024.
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Figure 2: The graph G/, is a 2-connected cubic graph with minyaren(Gl,) = n.

Proof sketch. We only discuss the two extreme cases in this sketch. Fix an odd number n € N and
set k == (n+3)/2. Let P = vjva...vx be the k-vertex path. Let Q' and Q* be two copies of Ps
and let K2 K3,...,K* 1 be k — 2 copies of K 3. Take the disjoint union of P, Q', QF, and all K*
for i € [2,k — 1]. Now, identify the degree-2 vertex of Q1 (resp. Q) with vy (resp. vi). Further, for
each i € [2,k — 1] identify v; with a degree-1 vertex of K?. The resulting tree 7' has 2k — 2 degree-3
and 2k degree-1 vertices. Choose a planar embedding of T and connect the leaves of T' by the outer facial
cycle. Then, the resulting graph H,, is cubic and has the HIST 7. Thus, minyarcu(Hy,) = 0. Fur-
ther, maxyarcn(Hy,) = n since the shortest non-separating cycle is of length 3 and a 3-decomposition
with n matching-edges can be obtained as follows: Let C,, be the triangle induced by the vertices of Q!
in H,. The following edges form the matching M,: for i € [2,k — 1] the edge of the outer face joining
two vertices of K* and the edge joining the degree-3 vertex of the K* to P, and the edge of the outer
face joining two vertices of Q*. Let T, = H,[E(H,) — E(Cy) — E(M,)]. The triple (T},,Cy, M,) is a
3-decomposition of H,, with ||M,| = n. For n = 3 the 3-decompositions are depicted in the third and
the fifth graph in Figure 1. O

5 3-Decompositions of Bilu-Linial Expanders

Bilu and Linial [3] give a concrete construction for a family of expander graphs by a series of lifting
operations associated to random signings. See [9] for a survey on expanders. In the following, we
investigate how 3-decompositions can be lifted. This illustrates how exploiting the flexibility of 3-
decompositions, yields a fruitful approach to verify the 3-decomposition conjecture for more classes of
graphs. The 2-lift of a graph G equipped with a signing s: E(G) — {—1, 1} is the graph lift(G, s) with

V(1ift(G, s)) = {vo: v € V(G)} U{v1: v € V(G)},
E(ift(G, s)) = U {upvo, urv1} U U {upv1, urvp}.

uves—1(1) uv€s—1(—1)

The vertices vy and vy are fibers of v and degyg(¢ ) (v0) = degyf(q,s) (V1) = degg(v). For a subgraph H
of G, we set lift(H, s) := lift(H, s| p(gry). Observe that lift(H, s) is a subgraph of lift(G, s). The signing
of a path P C G is s(P) == HeeE(P) s(e). In general, the existence of HISTs is not preserved by 2-lifts:
If G is a cubic graph with a HIST T and s = —1, then lift(G, s) is bipartite and |V (lift(G, s))| is a
multiple of 4. It follows with [8, Corollary 3] that lift(G, s) does not have a HIST. In contrast to this,
3-decompositions can be lifted under certain preconditions on the signing and the matching-edges.
Note that the lift of a connected graph is not necessarily connected again. E.g., if G is connected
and s = 1, then lift(G, s) is isomorphic to the disjoint union of two copies of G. The assumptions
of Theorem 10 ensure that the considered lift is connected. In the following, we characterize signings
which yield a disconnected lift in order to show that 3-decompositions can be lifted in this case.

Lemma 9. Let G be a connected graph with a signing s. The following are equivalent:
1. lift(G, s) is disconnected.
2. s7Y(—=1) is empty or a cut set of G.
3. 1ift(G, s) is isomorphic to two disjoint copies of G.
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In particular, if G is 3-decomposable and 1ift(G, s) is disconnected, then each of the two components
of lift(G, s) is 3-decomposable.

Theorem 10. Let (T,C, M) be a 3-decomposition of a cubic graph G with a signing s. If there
exists xy € E(M) such that s(xy) = —1 and s(xzTy) =1, then the following is a 3-decomposition
of lift(G, s):
(lift(7T, s) + xoy, Lift(C, s), lift (M, s) — zoy1).
A random variable s: E(G) — {—1,1} is a random signing of G if the sign of each edge is chosen
uniformly at random.

Lemma 11. Let G be a graph with a 3-decomposition (T',C,M). If s is a random signing of G, then
P[Ezy € E(M): s(zy) = —1 A s(zTy) = 1] = 1 — (3/a)IM]

Corollary 12. If G is a cubic graph and s is the random signing on G, then the probability that
the construction of Theorem 10 yields a 3-decomposition of 1ift(G, s) is mazimized if the considered
3-decomposition (T,C, M) of G satisfies | M| = maxymarcu(G).

When iteratively applying the lifting operation, the number of edges in the matching mj of the
k-th lift Gy is 2¥(mg — 1) + 1. Thus, the probability that iteratively applying Theorem 10 yields a
3-decomposition of Gy, is at least [} (1 — (3/0)™).

One can significantly improve this bound using that each lift yields at least two valid 3-decompositions
(use z17o instead of zgy; in Theorem 10) and, hence, two distinct possible edges in the matching.

6 Further research

The most pressing question is whether the flexibility of 3-decompositions can be exploited in order
to prove the 3-decomposition conjecture on expander graphs or on symmetric graphs. Further, it is
desirable to classify all graphs which have a unique 3-decomposition up to isomorphism.
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Computing edge-colored ultrahomogeneous graphs *

Irene Heinrich, Eda Kaja, and Pascal Schweitzer

TU Darmstadt, Darmstadt, Germany

Abstract

We develop a practical algorithm to enumerate all ultrahomogeneous edge-colored graphs up to
a specified order. As input, the algorithm can take either a list of all coherent configurations or all
transitive permutation groups. Efficiency is achieved by pruning lexicographic products quickly. We
provide numerical data on the number of objects up to isomorphism for orders up to 34.

1 Introduction

Ultrahomogeneous structures are classical objects in model theory with applications in algebra and
combinatorics. A structure R is ultrahomogeneous if every isomorphism between two induced sub-
structures of R extends to an automorphism of R. We are interested in algorithms for generating and
handling finite ultrahomogeneous structures. In this paper we develop algorithms for the base case
of structures with irreflexive binary relations. These structures can always be translated into loopless
edge-colored graphs. In our search for ultrahomogeneous structures in the base case, it suffices to con-
sider vertex-monochromatic coherent configurations. These are binary relational structures that satisfy
certain regularity conditions implied by ultrahomogeneity. There is a well-known Galois correspondence
between coherent configurations and permutation groups. There are thus two starting points that we
can take for our search: coherent configurations or transitive groups. Since we are only interested in
ultrahomogeneous structures we can limit ourselves to so-called 2-closed permutation groups on the
permutation group side.

For various subclasses of finite ultrahomogeneous structures, explicit classifications are known. This
is the case for simple graphs [3, 12], directed [10], 3-edge-colored [11], vertex-colored [9], and vertex-
colored oriented [8] graphs. None of these classifications allow arbitrarily many edge colors. Also
the primitive permutation groups of finite binary ultrahomogeneous structures have recently been
classified [4].

As the class of graphs considered becomes larger, the classification of ultrahomogeneous objects
becomes ever more complicated. A computer assisted approach seems to be in order.

Results. We develop a practical algorithm to enumerate all ultrahomogeneous edge-colored graphs
up to a specified order. The algorithm takes as input a list of all coherent configurations or all transitive
permutation groups of at most the given order.

Techniques. First, we provide a fast practical algorithm that checks whether a given object is
ultrahomogeneous. Our algorithm can take either coherent configurations or permutation groups as
input and checks whether the graph induced by the input is ultrahomogeneous (Subsection 3.1).

The lexicographic product operation of graphs preserves ultrahomogeneity and it turns out that
many ultrahomogeneous objects are in fact lexicographic products of smaller ultrahomogeneous objects.

“The research leading to these results has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (EngageS: Grant Agreement No. 820148) and from the
German Research Foundation DFG (SFB-TRR 195 “Symbolic Tools in Mathematics and their Application”). Emails:
lastname@mathematik.tu-darmstadt.de.
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Second, to avoid a combinatorial explosion, we develop a linear time algorithm to prune such products.
The algorithm takes as input a coherent configuration and determines that it is “not a lexicographic
product” or renders the input as “a product or not ultrahomogeneous” (Subsection 3.2). The crux
here is that in the latter case, we do not need to process the input since both non-ultrahomogeneous
objects and products can be discarded. This allows our algorithm to avoid checking regularity of the
input and thus run in time O(kn), where k is the rank of the configuration (number of colors/binary
relations) and n the number of vertices. The computational results are aggregated in Section 4.

2 Preliminaries

For k € N we set [k] == {1,2,...,k} and for a k-tuple ¢t = (v1,v2,...,v;) we set m;(t) = v;. The
restriction of a map ¢ to a set U is ¢|y. If ¢ is a restriction of ¢, then 1) is an extension of .

A binary relational structure is a tuple R = (V, Ry, Ra,..., Rx) where V is a set of vertices and
R; C V2 for each i € [k]. We set V(R) := V. Throughout this paper we assume, for our purposes
w.l.o.g., that {R;: i € [k]} is a partition of V2, there exists a d € [k] such that Ry = {(v,v): v € V}
is the diagonal of R, and for each ¢ € [k] either R; is symmetric or there exists j € [k] such that
Rj ={(v,u): (u,v) € R;}. All relational structures in this paper are binary and finite. Two relational
structures R = (V, Ry, Ro, ..., Ry) and § = (W, S1, Se, ..., Sk) are isomorphic if there exists a bijection
¢: V. — W such that for all i € [k] it holds that (u,v) € R; if and only if (p(u),¢(v)) € S;. In this
case  is an isomorphism from R to S. If, additionally, R = &, then ¢ is an automorphism of R. The
automorphisms of R form a group, denoted by Aut(R). For a subset U of V' the induced substructure
of Ron Uis R[U] = (U, RiNU? RoNU?,..., R NU?). A partial isomorphism from R to itself is an
isomorphism between two induced substructures of R. If every partial isomorphism from R to itself
extends to an automorphism of R, then R is ultrahomogeneous. The structures R and S are equivalent
if there exists a permutation o of [k] such that R is isomorphic to (W, Sy(1), So(2), - - - » Sok))-

A (vertex) coloring of R is a map x: V(R) — C where C is some set of colors. Then (R, ) is a
colored relational structure. An inclusion-wise maximal set U C V(R) with |x(U)| =1 is a color class
of (R,x). The definitions of isomorphisms, automorphisms, and ultrahomogeneity directly transfer
to the context of colored structures, where it is important that isomorphisms preserve vertex colors.
Note that there is a 1:1-correspondence between colored relational structures we consider and complete
edge-colored digraphs, where the edge colors of the digraph correspond to the indices of the relations.

Coherent configurations. A relational structure R = (V, Ry, Ro, ..., Ry) is a coherent configura-
tion® if for every choice of three indices a, b, c € [k] and (u,w) € R, the number of elements v € V' such
that (u,v) € Ry and (v,w) € R, is a constant Af . which is independent of the choice of v and w. A
coherent configuration R is symmetric if all the relations are symmetric.

Lexicographic products. Let R = (V, Ry, Ra,..., R;) and § = (W, S1, Se, ..., S¢) be two relational
structures such that Ry is the diagonal of R and Sy is the diagonal of S. The lexicographic product
of R and S is the relational structure R - S = (V x W, Ry, Ry, ..., Ry_1,51,52,...,5;) where R; =
{((v,w), (W'w") € (V x W)2%: (v,0') € R;} and S; = {((v,w), (v,w')): v € V,(w,w') € S;}. We
emphasize that the index i of R; is at most k — 1 (otherwise the diagonal S, would have a non-empty
intersection with Rk) Observe that the relations of R - S indeed form a partition V' x W. We say

that R or S is a trivial factor of R - S if |[V| =1 or |W| = 1, respectively.

Lemma 1. If [W| > 2 and min;cp{|Ri|} > |V, then max;c 55| < mine,_q |R;| . In particular,
if R is a coherent configuration and S is a non-trivial factor of R-S, then max;c(y ]S]] < minep_q) ]RZ]

!Technically these are colored coherent configurations and usually the underlying uncolored object is considered, i.e.,
the ordering of the relations is ignored. Certain coherent configurations are sometimes called association schemes.
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In general, we say that a structure ¢s a lexicographic product whenever it is equivalent to a lexico-
graphic product. We say that R is prime if |V(R)| > 2 and every structure R’ equivalent to R satisfies:
R’ =& - So implies min{|V(S1)[, |V (S2)|} = 1.

Groups. The symmetric group of a non-empty set V' is Sym (V). A permutation group I" on V is a
subgroup of Sym(V'). For v € V and v € T we set v” := v(v). An action of I" on V is a homomorphism ¢
from I' to Sym(V'). The image of I under ¢ is a subgroup of Sym(V') called the permutation group
induced by T on V, denoted I'V. The orbit of x € V is o' :== {27: v € T'}. We say I is transitive
on V if 28" =V for all z € V. The stabilizer of x € V is Stabr(z) := {y € T': 27 = 2}. The pointwise
stabilizer of X C V' is pwStabp(X) = (\,cx Stabr(z). If I is a transitive permutation group on V/,
then the partiton of V' x V into orbits of I is a coherent configuration R(I"). Note that I"' < Aut(R(I")).
If equality holds, then I' is 2-closed, that is, I equals its 2-closure, which is the largest subgroup
of Sym(V') which preserves the orbits of I" on V' x V. A coherent configuration R such that R = R(I")
for some transitive permutation group I is called Schurian.

Block systems. Let I' < Sym(V') be transitive. A block is a set B C V such that BY = B or
B'nB=0forallyeT. If |B| € {1,|V|}, then B is trivial. If B is a block, then B:={B7: v €T} isa
block system of V. Note that B is a partition of V' which is invariant under the action of I'. A Schurian
coherent configuration R is imprimitive if Aut(R) is imprimitive, that is Aut(R) admits a non-trivial
block system.

Lemma 2. If R is a coherent configuration, then up to equivalence there is a unique factorization of R
into prime factors with respect to the lexicographic product.

Proof sketch. We first observe that, up to equivalence the lexicographic product is associative. Next,
it can be shown that if R-S =R'-8 then S < & or &' > &', meaning S is an induced substructure
of 8§’ or vice versa. Finally we observe that if S < &’ then R’ - S’ is equivalent to R’ - T - S for some
structure 7. O

As for graphs [11], for coherent configurations lexicographic products also preserve ultrahomogeneity.

Lemma 3. If R and S are relational structures, then R - S is ultrahomogeneous if and only if both
structures R and S are ultrahomogeneous.

3 Algorithms

Let R = (V, Ry, Ra, ..., Ri) be a coherent configuration. For our practical computations and their
analysis we assume that V' = [|V|] and that we are given R as a |V| x |V|-adjacency matriz A(R) with
A; j = s precisely if (i,7) € Rs.

Definition 4. For a subset W C V', the neighborhood partition Pr (W) is the partition of V\W where
two elements i,j € V\ W are in the same part if and only if A(R)w, = A(R)w,; for every w € W.

3.1 Checking ultrahomogeneity

Lemma 5. If (R, x) is a colored binary relational structure, then (R, x) is ultrahomogeneous if and
only if the following conditions hold for every color class C of (R, x):

1. C is an orbit of Aut((R,x)).

2. For some (and thus by Part 1 every) v, € C the structure (R[V(R) \ {vc}], xU) is ultrahomo-
geneous, where xU¢ is a coloring whose color classes form the meet of the neighborhood partition
Pr({vc}) and the color classes of x (i.e., it is the coarsest partition which is finer than both of
them).
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function is_ultrahomogeneous(A, W);

Input : an adjacency matrix A of a coherent configuration R and a subset W C V(R)

Output: true if R is ultrahomogeneous with respect to W and false otherwise

if there is a part in Pr(W') on which pwStab(W') does not act transitively then return false;

L := a list containing precisely one vertex of every part in Pr(W);

for ve L do

if is_ultrahomogeneous(A, W U {v}) == false then return false;

end

return true;
Algorithm 1: Checking if a coherent configuration R is ultrahomogeneous. The input is the
adjacency matrix A of R and a set of vertices W (default: empty).

(=2 BN L BNV VI

Theorem 6. A coherent configuration R is ultrahomogeneous if and only if Algorithm 1 returns “true”

when called on the input (A, W) with A = A(R) and W = ().

Proof. For {wi,ws,...,ws} C V(R) observe that the neighborhood partition Pg({w1,ws,...,w;}) is
precisely the partition of R[V (R)\{w1, wa, ..., w;}] into the color classes with respect to (((x™1)"2) )"
(for the definition of this coloring, see Lemma 5). Recursively applying Lemma 5 yields the theorem. [J

Ignoring the running time of basic group theoretic algorithms (i.e., using the Schreier-Sims algorithm
to compute point-wise stabilizers), the running time of Algorithm 1 can be bounded using the number
of irredundant bases up to equivalence under the group action. However, using some heuristics in
particular to deal with permutations of the sequences of chosen points, one can significantly reduce
this running time requirement.

3.2 Checking lexicographic products

Lemmas 2 and 3 imply that once we have, up to some order, the number of ultrahomogeneous relational
structures that are not a lexicographic product, we can compute the number of all such structures,
including the products. We therefore develop a fast algorithm that can discard lexicographic products.
Input : the adjacency matrix A(R) of a coherent configuration R = (V, Ry, Ra, ..., R)
where R, is the diagonal of R and |R;| < |R;| whenever i < j
Output: either “not a lexicographic product” or “lexicographic product or not
ultrahomogeneous”
if £ <2 then return “not a lexicographic product”;
min_j = 2;
choose vg € V(R);
for i from 1 to k—1 do
choose v € V(R) with (vg,v) € R;;
for w e V(R) \ {vo,v} do
if Aygw # Avw then min_j = max(min_j, Ay + 1, Ay + 1);
end

© W g O ok W

if 1+ 1 == min_j then return “lexicographic product or not ultrahomogeneous”;
end

-
- o

return “not a lexicographic product” ;
Algorithm 2: Check if a coherent configuration is a non-trivial lexicographic product.

Theorem 7. The output of Algorithm 2 is correct.

Assuming the relations are already ordered by size, the running time of Algorithm 2 is O(kn) where k
is the number of relations (rank) and n the number of vertices. Note that the fact that not even the
entire input has to be checked is achieved by leveraging the assumed ultrahomogeneity.
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4 Computations

Ultrahomogeneity implies coherence, and there is a complete database of coherent configurations of
order at most 34 [6] (see also the paper series of Hanaki and Myamoto [5, 7]). Complete data for 38 is
also available.

Our approach for the generation of ultrahomogeneous binary relational structures is to run our
ultrahomogeneity test (Algorithm 1) on the configurations.

Thin coherent configurations are omitted in the data base of coherent configurations [6]. Since
every transitive thin coherent configuration is ultrahomogeneous and the thin coherent configurations
correspond exactly to the transitive permutation groups, they exactly account for the difference.

We used SageMath [13] for our computations. The coherent configurations are given via adjacency
matrices. To filter out some of them we have the following observation.

Lemma 8. If a coherent configuration is ultrahomogeneous, then it is Schurian.

Proof. Suppose R = (V,R1, Ra,..., Rg) is an ultrahomogeneous coherent configuration. We argue
that R’ := R(Aut(R)) is equivalent to R. It is clear that R’ is at least as fine as R, that is, if (v, w)
and (v/,w') are in the same relation of R’ then they are in the same relation of R. For the other
direction, if (v,w) and (v',w’) are in the same relation of R then by ultrahomogeneity there is an
automorphism mapping (v, w) to (v',w’), and thus the two pairs are in the same relation of R'. O

Thus we may restrict our attention to Schurian coherent configurations. Using Algorithm 2 we filter
out the lexicographic products and then apply Algorithm 1 to the remaining configurations.

The fact that we can limit ourselves to Schurian coherent configurations is crucial since this gives
us an alternative for order 31. Rather than considering the 98307 coherent configurations of order 31,
we make use of GAP [2] and the AssociationSchemes [1] package. By the Galois correspondence,
Schurian coherent configurations are in 1:1-relation with 2-closed groups. Hence we first compute
the list consisting of the 2-closures of the 12 transitive groups of degree 31. There are 8 resulting
Schurian coherent configurations coming from these groups (including one thin coherent configuration),
whose adjacency matrices can be obtained using the AssociationSchemes package, and then we apply
Algorithm 1 to check for ultrahomogeneity. This approach is equivalent to working with the matrices,
and in this particular case it reduced the workload significantly. Indeed, it turns out that there are
orders for which there are significantly fewer transitive groups, while there are other orders for which
there are significantly fewer coherent configurations. The total computation was less than one day on
a personal computer (Intel i7 at 2.8 GHz).

Figure 1: Numerical data surrounding ultrahomogeneity of vertex-monochromatic coherent configura-
tions.
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In Figure 1 we depict the number of ultrahomogeneous relational structures of order up to 34. On
the left side, we present the total number of ultrahomogeneous coherent configurations which are not
lexicographic products, compared to the total number of homogeneous coherent configurations. On
the right side, we show the number of imprimitive coherent configurations and symmetric coherent
configurations within the overall count of ultrahomogeneous coherent configurations.

5 Future work

We generated all ultrahomogeneous edge-colored graphs up to order 34. In particular by the pruning
of lexicographic products, our algorithms are comfortably efficient enough to compute the number
of ultrahomogeneous graphs in the order ranges in which the coherent configurations are available.
However, there is ample room for speeding up the algorithms using additional pruning. Algorithm 1
can be sped up by considering only canonical sequences of points v chosen recursively. More pressing
is an analysis of the ultrahomogeneous graphs that are not lexicographic products. Certain other
ultrahomogeneity preserving general constructions are known, but the question of whether we can use
product structures to provide a concise classification, preferably admitting efficient algorithms, remains.
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Extended abstract of
Regular polytopes, sphere packings and Apollonian sections*

Ivén Rasskin'?

Laboratoire d’Informatique et des Systemes, Aix-Marseille Université, Campus de Luminy, France

Abstract

In this paper, we explore the geometry and the arithmetic of a family of polytopal sphere packings
induced by regular polytopes in any dimension. We prove that every integral polytope is crystallo-
graphic and we show that there are 11 crystallographic regular polytopes in any dimension. After
introducing the notion of Apollonian section, we determine which Platonic crystallographic packings
emerge as cross sections of the Apollonian arrangements of the regular 4-polytopes. Additionally,
we compute the Mobius spectrum of every regular polytope.

1 Introduction

Apollonian circle packings and their generalizations are currently active areas of research in geometric
number theory [9, 10, 2]. In dimension 2, some variants of integral Apollonian packings have been
explored by substituting the building block with a different circle packing modeled on a polyhedron [8,
22,23, 3, 5, 14]. While every polyhedron can be employed to construct a packing, not all of them admit
an integral structure like the Apollonian one. A fundamental question regarding the determination of
which polyhedra are integral in this sense is still wide open [12, 5].

Similarly, in dimension 3, a family of crystallographic/Apollonian-like sphere packings arise by it-
eratively reflecting an initial sphere packing modeled on a 4-polytope as in Figure 1. Integral crys-
tallographic packings modeled on the 4-simplex [20, 11] and the 4-cross polytope [13, 7, 19, 16] have
been extensively studied. Unlike polyhedra, not every 4-polytope is crystallographic, in the sense that
it serves as a suitable model for a crystallographic packing. In this paper, we delve into the crystallog-
raphy and the integrality of regular polytopes in any dimension.

Figure 1: An integral hypercubic crystallographic packing after 0, 1, 2 and 3 iterations. The labels
are the bends (reciprocal of the radii) of the spheres.

*The full version of this work can be found in [18], which is a recent update of a previous preprint including some
partial results of this version. This work is currently under review and it is partially contained in the PhD thesis of the
author [17]. This research is supported by the CNRS and the Austrian Science Fund FWF projects F-5503 and P-34763

"Email: ivan.rasskin@lis-lab.fr. Research of I. R. supported by the CNRS
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2 Preliminaries on sphere packings and edge-scribable polytopes

An oriented hypersphere, or simply sphere, of R4 := R? U {c0}, is the image of a spherical | cap of §¢
under the stereographic projection. Every sphere S is uniquely defined by its center ¢ € R4 and its
bend b € R (the recripocal of the oriented radius), or if S is a half-space, by its normal vector 7 € S!
pointing to the interior and the signed distance § € R between its boundary and the origin. The
inversive coordinates of S are represented by the (d + 2)-dimensional real vector

- T
(bc,b;b,b;b> if b0,
i(8) = (1)

(n,8,0)T otherwise

where b = b||c||? — } is the co-bend of S. The co-bend is the bend of S after inversion through the unit

sphere. The inversive product of two spheres S, S’ of ]1@ is the real value
(8,5") = i(5)" Qu+21(S) (2)

where Qg2 is the diagonal matrix diag(1,...,1, —1) of size d + 2. The inversive product encodes the
relative position of two spheres S and S’ according to the following criteria:

<-1 ifSns =0,

=—1 if 35S and 95’ are tangent and int(S) Nint(S") = 0,
=1 if S and 95’ are tangent and S C S’ or S’ C S,
>1 if0SNas =0 and SCS or S CS.

(S,5") 3)

An arrangement of spheres S in R?, possible infinite, is a packing if their interiors are mutually disjoint.

The group of Mdobius transformations of R? preserves the inversive product and acts linearly on the
inversive coordinates as an orthogonal subgroup of SLg1o(R) with respect to Qg2.

For every d > 1, we denote the polar of a subset X € R by X* = {u € R? | (u,v) <1 forallv € X}.

The stereographic sphere of a point v € R? outside S™' (i.e. with |Jv|| > 1) is the sphere S, of Rd~1
obtained by the stereographic projection of the spherical cap {—v}*NS?!. For any d-polytope P with
vertices outside the unit sphere, the (sphere) arrangement projection of P is defined as the arrangement
Sp of the stereographic spheres of the vertices of P.

A d-polytope is termed edge-scribed if its edges are tangent to the unit sphere [6]. If, in addition,
the barycenter of the contact points is the origin, it is referred to as canonical [24]. A d-polytope is
considered edge-scribable if it admits an edge-scribed realization [6]. In dimension d > 3, all the edge-
scribed realizations of an edge-scribable d-polytope P are equivalent up to Mobius transformations to
a unique canonical realization Py (see [21, 14] for more details).

The arrangement projection of an edge-scribed polytope is a packing. Reciprocally, we say that a
sphere packing Sp in R? with d > 2, is polytopal if there is an edge-scribable (d + 1)-polytope P and
a Mobius transformation p such that Sp = p - Sp,. The combinatorial structure of Sp is encoded by
the corresponding edge-scribable polytope P. The vertices and the edges of P are in bijection to the
spheres and the tangency relations of Sp. The facets of P correspond to the dual spheres of Sp which
are the spheres forming the dual arrangement Sp := p - Spy. The Apollonian arrangement of Sp is
defined as the orbit space Z(Sp) := (Sp) - Sp where (S}) denotes the group generated by inversions
through the dual spheres. We denote by &y, . 1 the Apollonian arrangement of a regular polytope
with Schlafli symbol {p1,...,pa}
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2.1 Crystallographic polytopes

In dimension 2, the Apollonian arrangements of 3-polytopes are packings, but this is not true in
general [14]. In higher dimensions, Apollonian arrangements which are packings belong to the family
of crystallographic sphere packings introduced by Kontorovich and Nakamura in [12]. These are dense
infinite sphere packings obtained as the orbit space & = (S)-S, where S is a finite sphere packing called
the cluster, <§> is a geometrically finite subgroup of the group of Mdobius transformations generated
by the inversions through a finite arrangement of spheres S, called the co-cluster, satisfying that every

sphere of § is disjoint, tangent or orthogonal to every sphere of S.

Definition 1. For every d > 3, an edge-scribable d-polytope P is crystallographic if any Apollonian
arrangement & (Sp) = (Sp) - Sp is a sphere packing in dimension d — 1.

Crystallographic polytopes exist only in dimension 3 < d < 19 [2]. From a Boyd’s remark in [4],
we have that an edge-scribable polytope P is crystallographic when the dihedral angles of P, viewed
as an hyperideal hyperbolic polytope, satisfy the crystallographic restriction. This restriction dictates
that the periode of every rotation obtained as the product of two reflections through the facets is
either 2, 3,4, 6, 0o, imposing a condition on the dihedral angles. On the other hand, the dihedral angle
a of two adjacents facets f and f’ of P is equal to the intersection angle of the corresponding dual
spheres of Sy, Sy € S5, as defined in [15]. This angle can be computed from their inversive product
by (Sf,Sf) = cos(a). Therefore, the crystallographic restriction can be reformuled in terms of the
inversive product of the dual spheres, as described in Lemma 2.

Lemma 2. For any d > 3, an edge-scribable d-polytope P is crystallographic if and only if for any two

dual spheres Sy, Sy of a polytopal sphere packing Sp, we have |(Sy, Sy)| € {0, %, ?, @} U [1,00).

2.2 Integral polytopes

In [12], Kontorovich and Nakamura defined a 3-polytope P to be integral® if there is a crystallographic
circle packing modeled on P where the bends of the spheres are all integers. The fundamental question
regarding the determination of which 3-polytopes are integral is still wide open. In [5], Chait-Roth,
Cui, and Stier studied the integral 3-polytopes with few vertices. Based on previous works of Nakamura
and Kontorovich, they gave the following enumeration of the integral uniform 3-polytopes.

Theorem 3 (Th. 26 [5]). There are only 8 integral uniform 3-polytopes: the tetrahedron, the octahe-
dron, the cube, the cuboctahedron, the truncated tetrahedron, the truncated octahedron, the 3-prism and
the 6-prism.

In higher dimensions, the previous definition of integral 3-polytope can be naturally extended for
any edge-scribable polytope.

Definition 4. For any d > 3, an edge-scribable d-polytope P is integral if it admits an Apollonian
arrangement P (Sp) where the bends of the spheres are in Z.

A priori, an edge-scribable polytope might be integral and non-crystallographic, meaning that it
could admit an Apollonian arrangement where the bends of the spheres are integers and the spheres
overlap. Indeed, this is the case if we adapt the definition of integral polytope for number rings other
than Z. For instance, the 600-cell is integral in Z[p], but is not crystallographic (see Figure 2).

1 This definition of integral polytope differs from the one commonly employed in combinatorics, which involves polytopes
with integer vertex coordinates, also known as lattice polytopes.
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Figure 2: (Left) A polytopal sphere packing modeled on the 600-cell labelled with the bends; (right)
the first reflections of its Apollonian arrangement which is integral in Z[p] and is not a packing.

3 Main results

3.1 The relation between crystallography and integrality

In this paper, we prove the following condition for determining the integrality of edge-scribable poly-
topes.

Lemma 5. For any d > 3, if an edge-scribable d-polytope P is integral, then for any two dual spheres
S¢, Sy of any polytopal sphere packing Sp, we have [(Sy, Sg)| € {@ |n € N}.

With this lemma we can easily identify a mistake in the list of the integral uniform 3-polytopes of
Chait-Roth, Cuit and Stier (Th. 3): the 6-prism is not integral, since it contains two dual spheres whose

inversive product is —5/3 ¢ {:l:@}neN. Another straightforward consequence follows from Lemmas 2
and 5, and gives us the relation between crystallographic and integral polytopes in higher dimensions.

Theorem 6. Fvery integral polytope is crystallographic.
In the case of regular polytopes, we have the following.
Theorem 7. For every d > 3, the only crystallographic reqular d-polytopes are:
(d = 3) the five Platonic solids,
(d =4) all the regqular 4-polytopes except the 600-cell,
(d =6) the 6-cross polytope.
Moreover, all these are integral except the icosahedron, the dodecahedron and the 120-cell which are
integral in Z[p].
3.2 Apollonian sections

The study of cross-sections is a classic approach for extracting patterns of crystallographic sphere
packings [4, 1]. In this paper, we introduce an algebraic tool called Apollonian section which proves to
be useful for identifing which Platonic crystallographic circle packings emerge as cross-sections of the
Apollonian arrangements of the regular 4-polytopes.
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Theorem 8. There are the following relations between the Apollonian arrangements of the reqular
d-polytopes for d = 3,4:

@{3,3} C @{3,3,3};

P33y, P34y Pazy C P334)
9{4,3} C @{4,3,3}7

«@{3,4}7 @{4,3} C @{3,4,3};
P33y P35y C P33

D531 C Prs533)

where “P, v C Prrsny” means that P, v can be obtained as a cross-section of Py s 1.

Some of these cross-sections have been used as a geometric framework for obtaining results in geo-
metric knot theory, as discussed in [16]. Another important feature of this approach is that it enable
us to determine whether a cross-section preserves integrality.

Corollary 9. Fvery integral Platonic crystallographic circle packing can be obtained as a cross-section
of an integral reqular crystallographic sphere packing.

Figure 3: (Left) An integral octahedral crystallographic circle packing P34y obtained as a cross-
section (right) of an integral orthoplicial crystallographic sphere packing %33 4y (center).

3.3 The Mobius spectrum of the regular polytopes

In [14], Ramirez Alfonsin and the author introduced a spectral invariant of every edge-scribable d-
polytope P with d > 3 called the Mdbius spectrum 9(P). This is defined as the multiset of the
eigenvalues of the Gramian of any polytopal sphere packing Sp. Due to the M6bius uniqueness of
edge-scribable polytopes, 9(P) does not depend on the packing. It is currently unknown whether
there exist two combinatorially different edge-scribable polytopes with the same M&bius spectrum. In
this paper, we compute the Mobius spectrum of every regular polytope P in terms of the number of
vertices and another geometric invariant called the canonical length ¢p, defined as half the edge-length
of a canonical realization of P.

Theorem 10. For any d > 3, the Médbius spectrum of every regular d-polytope P with n vertices is
n

M(P) = (—nlp", 7

(L+ 7)1, 00=4=D). ()
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Abstract

A graph H is said to be common if the number of monochromatic labelled copies of H in a 2-
colouring of the edges of a large complete graph is asymptotically minimized by a random colouring.
It is well known that the disjoint union of two common graphs may be uncommon; e.g., Ky and
K3 are common, but their disjoint union is not. We investigate the commonality of disjoint unions
of multiple copies of K3 and K5. As a consequence of our results, we obtain an example of a pair
of uncommon graphs whose disjoint union is common. Our approach is to reduce the problem
of showing that certain disconnected graphs are common to a constrained optimization problem
in which the constraints are derived from supersaturation bounds related to Razborov’s Triangle
Density Theorem. We also improve bounds on the Ramsey multiplicity constant of a triangle with
a pendant edge and the disjoint union of K3 and K.

1 Introduction

In one of the first applications of the probabilistic method, Erdés [6] showed that a random colouring of
the edges of a clique on (1 —0(1))2~/2e~1k2%/2 vertices with red and blue contains no monochromatic
complete graph on k vertices with positive probability; this implies a lower bound on the Ramsey
number of the complete graph Kj, i.e. the smallest N for which every 2-colouring of the edges of
Ky contains a monochromatic K. To this day, Erdés’ bound has been improved only slightly by
Spencer [24]. One of the core themes in Ramsey theory is that random colourings tend to perform well
in avoiding certain monochromatic substructures.

This intuition extends to the closely related area of “Ramsey multiplicity” in which the goal is to
minimize the number of monochromatic labelled copies of a given graph H in a red/blue colouring of the
edges of K asymptotically as N tends to infinity. A graph H is said to be common if this asymptotic
minimum is achieved by a sequence of random colourings. A famous result of Goodman [10] implies that
K3 is common (see Theorem 7). Inspired by this, Erdés [5] conjectured that K}, is common for all £ and,
nearly two decades later, Burr and Rosta [4] conjectured that every graph H is common. Sidorenko [22]
observed that the paw graph P consisting of a triangle with a pendant edge is uncommon. Around
the same time, Thomason [25] showed that K} is uncommon for all k > 4; thus, the aforementioned
conjectures are both false. Later, Jagger, Stovicek and Thomason [14] proved that every graph H
containing a K4 is uncommon. In particular, almost every graph is uncommon. In recent years, there
has been a steady flow of results proving that the members of certain families of graphs are common
or uncommon [16, 17, 11, 1, 2, 12, 15]. In spite of this, the task of classifying common graphs seems
hopelessly difficult.

The main goal of this paper is to provide a new approach for bounding the number of monochromatic
copies of certain disconnected graphs in a colouring of K and to use it to obtain several new families

*The full version of this work can be found in [18] and will be published elsewhere.
fEmail: dlwogor0923@uvic.ca
fEmail: noelj@uvic.ca Research of J. A. Noel supported by NSERC and a university start-up grant.
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of common graphs. Given graphs Hy and Ho, let Hi LI Hs denote their disjoint union; also, for a graph
F and ¢ > 1, let £ - F be the disjoint union of ¢ copies of F. The argument of Sidorenko [22] that the
paw graph is uncommon also shows that K3 U Ky is uncommon (with the same proof). Most of our
results focus on the commonality of unions of several copies of K3 and Ks. Our first result is as follows.

Theorem 1. For 0 < ¢ <2, the graph (2- K3) U (£ - K2) is common.

We also show that this is best possible in the sense that (2 - K3) U (3 - K3) is uncommon; see
Proposition 10. Since K3 and K3 are both common, Sidorenko’s result [22] that K3l K3 is uncommon
tells us that the disjoint union of two common graphs can be uncommon. Using Theorem 1, we find
that the opposite phenomenon is also possible; the disjoint union of two uncommon graphs can be
common. In fact, the disjoint union of two copies of a single uncommon graph can be common.

Corollary 2. There exists an uncommon graph H such that H LI H is common.

Proof. Consider H = K3 U K5. The fact that H is uncommon was shown by Sidorenko [22], and the
fact that H U H is common follows from Theorem 1 with ¢ = 2. ]

We remark that our results also allow us to obtain new examples of graphs H; and Hs such that
H, is common, Hs is uncommon and H; U Hs is common. However, the existence of such a pair of
graphs was already known; see [17, Subsection 1.1]. We also prove a general result on disjoint unions
of triangles and edges, provided that the number of triangles is at least three.

Theorem 3. For k >3 and 0 < ¢ < 5k/3(~ 1.666k), the graph (k- K3)U (¢ - K2) is common.
Theorem 4. For k > 1 and { = [1.9665k], the graph (k- K3) U (¢ - K3) is uncommon.

2 Preliminary

Several of the results in this paper are best understood in the context of graph limits. A kernel is a
bounded measurable function U : [0, 1]2 — R such that U(z,y) = U(y, z) for all 2,y € [0,1]. A graphon
is a kernel such that 0 < W(x,y) <1 for all z,y € [0,1]. The set of all graphons is denoted Wy. Given
a graph G, let v(G) := |V(G)| and e(G) := |E(G)|. A graph G is said to be empty if e(G) = 0. Each
graph G can be associated to a graphon W by dividing [0, 1] into v(G) intervals Iy, ..., I of equal
measure corresponding to the vertices of G and setting W¢ equal to 1 on I; x I; if the ith and jth
vertices are adjacent and 0 otherwise. The homomorphism density of a graph H in a kernel U is defined
by

t(H,U) :—/ W (2, ) doy (g
[0’1]V<H) uvel;[(H)

where xy () = (2, : v € V(H)). We refer the reader to [19] for more background on graph limits. The
Ramsey multiplicity constant of a graph H is defined to be

c¢(H):= Wigévo(t(H, W)+ t(H,1—-W)).

In this language, a graph H is common if and only if
c(H) = 2(1/2)H), (1)

As stated above, K3 Ko and the paw graph P are uncommon. We obtain, to our knowledge, the
tightest known upper bounds on the Ramsey multiplicity constants of these two graphs; for the former
graph, we also obtain a reasonably tight lower bound which is proven without the assistance of the flag
algebra method.

Theorem 5. 0.121423 < ¢(K3 U K») < 0.121450.
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Theorem 6. The paw graph P satisfies ¢(P) < 0.121415.

Note that, for every graph H such that ¢(H) is currently known, either H is common or ¢(H) is
achieved by a “Turdn graphon” Wy, for some k > 3 [8, 13]. To our knowledge, Theorem 5 is the
closest that any result has come to determining ¢(H) for a graph H which does not fit into either of
these two categories. The lower bound in Theorem 5 can be improved by at least 0.022% using the
flag algebra method; however, such a proof would most likely be verifiable only with heavy computer
assistance, and is thus unlikely to provide much in terms of valuable insights. Several of the known
results on common graphs actually establish stronger inequalities than (1). Following [2], a non-empty
graph H is said to be strongly common if

HH, W) + t(H,1 = W) > t(Kg, W) 4 (Ky,1 — W) (2)

for every graphon W. A simple application of Jensen’s Inequality tells us that every strongly common
graph is common. A classical example of a strongly common graph is K3; see Theorem 7. A non-empty
graph H is said to be Sidorenko if

t(H, W) > t(Ky, W)et) (3)

for every graphon W. Clearly, every Sidorenko graph is strongly common which, in turn, implies
that every such graph is common. By taking W = Wk,, one can see that every Sidorenko graph
must be bipartite. Sidorenko’s Conjecture [23] famously states that every bipartite graph is Sidorenko.
Currently, every bipartite graph H which is known to be common is also known to be Sidorenko.
Also, the only known examples of strongly common graphs which are not Sidorenko are the odd
cycles [2, 10, 15].

Our strategy for obtaining new examples of common graphs relies on strong correlation inequalities,
such as (2) and (3). Given this, it is natural to wonder whether all common graphs are strongly
common; this question was raised in [2]. As it turns out, this is far from true. For example, K3 Ll K3
is common but not strongly common, and there are many other examples as well.

3 Key Ideas

Our approach is to reduce the problem of showing that certain disconnected graphs are common to a
constrained optimization problem, in which the constraints are derived from supersaturation bounds
related to Razborov’s Triangle Density Theorem. For the purposes of proving the lower bound of
Theorem 5, it will be enough to use the following theorem which was first announced by Fisher [7]; as
mentioned in [21], the proof contained a hole that can be patched using a later result of [9]. A new
proof was found by Razborov [20] prior to proving the general Triangle Density Theorem in [21].

Theorem 7 (Goodman’s Theorem [10]). K3 is strongly common.
Theorem 8 (Fisher [7] and Goldwurm and Santini [9]; see also Razborov [20]). Every graphon W with
t(Ko, W) < 2/3 satisfies

(K3, W) > é (-2 (2 + W) + 3t(Ko, W) (3 + W))

Theorem 9 (Bollobés [3]). Every graphon W satisfies

2
(Ko, W) — =

t(K3, W) = 3

IS

To prove Thoerem 4, the upper bound of Theorem 5 and Theorem 6, the graphons that we will
use are all of the same general form. For n > 1, let A\, be the set of all vectors Z of length n with
non-negative entries that sum to one. Given z € A,, and an n X n symmetric matrix A with entries in
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[0,1], let Wz 4 be defined as follows. First, divide [0, 1] into n intervals Iy, ..., I,, such that the measure
of I; is equal to Z;. Next, for each 1 <4,j < n, define Wz 4 to be equal to A;; for all (x,y) € I; x I;.
It is easily observed that, for any graph H,

tHWza) = > I Zw I Arwso: (4)

F:V(H)—[n] veV (H) weEB(H)

Using this construction, we could prove Theorem 4. Let & > 1 and ¢ = [1.9665k]|. We show that
H = (k- K3)U (- Ks) is uncommon. Define v = ¢/k and note that 1.9665 < o < 2. Let

pi=1— 2 1/B+a)

We let W be the graphon Wz 4 where 2 = (1/2,1/2) and A is a 2 x 2 matrix whose diagonal entries
are p and off-diagonal entries are 1.

Proposition 10. The graph (2 - K3) U (3 - K2) is uncommon

Proof. We prove that the graph H = (2 - K3) U (3 - K3) is uncommon. For z € [0,1/2] and y € [0, 1],
we define W, , := Wz 4 where 2 = (1 —22,2,2) € Az and A is the symmetric 3 x 3 matrix in which
A(1,2) = A(1,3) =1, A(2,3) = y and A(4,7) = 0 for 1 < i < 3. Setting z = 0.28 and y = 0.42 yields
h(z,y) = 0.00390226 < 2 - (%)9, which completes the proof. ]

Proposition 11. (3- P) U (2 K3) is uncommon.

Proof. Let H = (3-P)U(2- K>). Once again, we use the graphon W, , from the previous three proofs.
This time, we set z = 0.429919 and y = 0.43222. Thus, t(H,W,,) +t(H,1 - W,,) < 0.000121856 <
2(1/2)'* and the result follows.

0

Using the same construction above with different values of y and z, we could get the upper bound

of Theorem 5 and Theorem 6
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Abstract

Consider a bicolored point set P in general position in the plane consisting of red and blue points
such that the number of blue points differs from the number of red points by at most one. We show
that if a subset of the red points forms the vertices of a convex polygon separating the blue points,
lying inside the polygon, from the remaining red points, lying outside the polygon, then the points of
P can be connected by non-crossing straight-line segments so that the resulting graph is a properly
colored Hamiltonian path.

1 Introduction

In geometric graph theory it is a common problem to decide whether a given graph can be drawn in
the plane on a given point set so that the edges are represented by non-crossing straight-line segments.
For example, deciding whether a given general planar graph has a non-crossing straight-line drawing
on a given point set is NP-complete [7].

There are many interesting unanswered questions when considering bicolored point sets instead (see
the comprehensive survey by Kano and Urrutia [11]). We restrict ourselves to drawings of bipartite
graphs on bicolored point sets where edges are drawn as non-crossing straight-line segments between
points of different colors. This question remains interesting even for paths. Let B and R denote a set of
blue points and a set of red points in the plane, respectively, such that RU B is in general position, i.e.,
no three points are collinear. We call a non-intersecting path on R U B whose edges are straight-line
segments and every segment connects two points of RU B of distinct colors, an alternating path. If such
an alternating path connects all points of RU B, we call it an alternating Hamiltonian path. If such an
alternating Hamiltonian path shares the first and last vertex (but otherwise is still non-intersecting),
we call it an alternating Hamiltonian cycle.

If ||R| —|B|| <1 and R can be separated from B by a line, then Abellanas et al. [1] showed that
there always exists an alternating Hamiltonian path on RU B. This fact together with the well-known
Ham sandwich theorem implies that if |R| = | B|, then there always exists an alternating path on RUB
connecting at least half of the points. This trivial lower bound on the length of an alternating path
that always exists is the best known according to our knowledge. This bound was improved by a small
linear factor by Mulzer and Valtr [12] for point sets in conver position, i.e., when the points form the
vertices of a convex polygon. On the other hand, if we do not assume that R and B are separated by
a line, then there are examples where |R| = |B| > 8 and no alternating Hamiltonian path on R U B
exists, even if RU B is in convex position. Moreover, for RU B in convex position with |R| = |B| = n,
Csoka et al. [9] showed that there are configurations where the longest alternating path on R U B has
size at most (4 — 2v/2)n + o(n).

*The full version of this work can be found in [13] and will be published elsewhere. Supported by project 23-04949X
of the Czech Science Foundation (GACR) and by the grant SVV—-2023-260699.
TEmail: soukup@kam.mff.cuni.cz
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As we have seen above, an alternating Hamiltonian path does not exist on every point set but it
exists if ||R| — |B|| < 1 and R can be separated from B by a line. Another sufficient condition was
found by Cibulka et al. [8]. They looked more closely at configurations where R and B form a so-called
double chain and showed that if ||R| — |B|| < 1 and each chain of the double-chain contains at least
one-fifth of all points, then there exists an alternating Hamiltonian path on R U B.

The final sufficient condition that we know of was found by Abellanas et al. [1]. They showed that
if ||R| — |B|| < 1, the points of R are vertices of a convex polygon, and all points of B are inside this
polygon, then there exists an alternating Hamiltonian path on RU B.

In this paper, we generalize this last result, and by doing so, we extend the known family of config-
urations of points for which there exists an alternating Hamiltonian path on R U B. Specifically, we
prove the following theorem.

Theorem 1. Let R be a set of red points and B be a set of blue points such that RU B is in general
position. Let P be a convexr polygon whose vertices are formed by a subset of R. Assume that the
remaining points of R lie outside of P, points of B lie in the interior of P, and ||R| — |B|| < 1. Then
there exists an alternating Hamiltonian path on RU B.

When |R| = |B| we even find an alternating Hamiltonian cycle.

2 Preliminaries and an outline of the proof

By a polygonal region we understand a closed, possibly unbounded, region in the plane whose boundary
(possibly empty) consists of finitely many non-crossing straight-line segments or half-lines connected
into a polygonal chain. A bounded polygonal region is a polygon. A polygon can be defined by an
ordered set of its vertices; in that case, we assume that the vertices lie on the boundary of the polygon
in the clockwise direction, and we use index arithmetic modulo the number of vertices. A diagonal of
a convex polygon (or a polygonal region) is any segment connecting two points on the boundary of the
polygon. For an edge e of a convex polygon (or polygonal region), the closed half-plane to the side of e
that is disjoint with the polygon’s interior is denoted by out(e). For two points a,b in the plane, we
denote by ab the segment connecting them. The convez hull of a set of points X, denoted by conv(X),
is the smallest convex set that contains X.

Recall that B and R always denote the set of blue points and the set of red points, respectively.
Moreover, B and R are always disjoint, and R U B is always in general position. For a region T of
the plane, |||, and ||T'||; denotes the number of red points inside 7" and the number of blue points
inside T, respectively. For the points on the boundaries of regions, we specify if they belong to the
region or not (we will need to assign every point to exactly one part of a partition of the plane into
polygonal regions).

Our primary result, Theorem 1, is a generalization of the following theorem proved by Abellanas
et al. [1].

Theorem 2 ([1]). Let R be a set of red points and B be a set of blue points such that RU B s in
general position. Let R form the vertices of the polygon conv(RU B), the points of B lie in the interior
of conv(RU B), and ||R| — |B|| < 1. Then there exists an alternating Hamiltonian path on RU B.

Our improvement lies in the fact that the polygon P can be formed by a subset of R (instead of
the whole R), whereas the remaining points of R remain outside of P. The approach in the proof
of Theorem 2 in the case when |R| = |B| is to split the polygon formed by R into convex polygons,
each containing exactly one edge of the polygon and one blue point from inside the polygon, and then
connect by straight-line segments each of the blue points to the vertices of the edge that is inside the
same part. In this way, alternating paths of length two are formed inside each part of the partition.
Moreover, they share their end vertices, and so, together, they form an alternating Hamiltonian cycle
(this cycle is non-crossing since each of the small paths lies in its own part of the partition).
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We proceed similarly with only one significant distinction. Namely, we partition the whole plane
into convex parts so that every edge of the polygon is a diagonal of one part, and each part contains
one more blue point than it contains red points (not counting the vertices of the polygon). Inside each
of these parts, we find an alternating Hamiltonian path. And these paths together form an alternating
Hamiltonian cycle as before.

In section 3 we outline how we split the plane and in section 4 how to find the alternating Hamiltonian
path.

3 Partitioning theorem

For the partitioning of the plane, we prove the following theorem.

Theorem 3. Let P = (p1,...,ps) be a convex polygon, B be a set of blue points in the interior of P,
and R be a set of red points outside of P such that s = |B| — |R| and RUBU{p1,...ps} is in general
position. Then there exists a partition of the plane into convex polygonal regions Q1,...,Qs such that
each pipiy1 is a diagonal of Q; and for every i, we have ||Q;| g — ||Qil| p = 1. Moreover, every point of
RU B is counted in exactly one Q;. That is, if a point of RU B lies on the common boundary of more
Q;’s it is assigned to only one of them.

For the case of s = 3, i.e., when P is a triangle, we prove the following stronger lemma.

Lemma 4. Let Q be a convex polygonal region, P = (p1,p2,p3) be a triangle inside Q, B be a set
of blue points in the interior of P, and R be a set of red points outside P but inside QQ such that
RUBU{p1,p2,p3} is in general position. Additionally let nq,...,ng be integers satisfying the following
conditions.

1. ’B‘ — ‘R’ =n1 + ng + ns.

2. For every nonempty subset I of {1,...,3},

Zni > - ||Q N UOUt(pipi+1) (1)

icl iel

R

Then there exists a point y in P different from p1, po and p3 such that the half-lines yp1, ype and yps3
split Q into three parts Q1, Q2 and Q3. Moreover, there exists an assignment of points of BU R that
lie on the boundaries of Q1, Q2 and Q3 into adjacent parts so that ||Q;| g — ||Qill g = -

For an example partition according to Lemma 4, see Figure 1.

Note that the conditions established by Inequation (1) are necessary: When I contains only one
index ¢, the part @; is split by p;p;4+1 into two regions, one inside P and one outside of P. The part
outside of P is inside out(p;pi11), and so [|Q;|| < [|Q Nout(pipi+1)||z- Together with a trivial condition
|Qill g = 0 we get [|Qill g — |Qillg = — |Q Mout(pipiy1)| p, which is exactly one of the conditions. It
can be analogously observed for larger cardinalities of I’s.

Furthermore, note that in the case when () is the plane and all n;’s are equal to 1, the conditions
established by Inequation (1) always hold, and Lemma 4 implies Theorem 3 when P is a triangle.

In the proof of Lemma 4, we employ a standard technique (see Akiyama and Alon [2]) and substitute
points with disks of the same area and work with the area of the disks instead of the number of points.
This is helpful because the boundaries of polygonal regions have an area of size zero, and so the area of
all disks will be precisely distributed between the interiors of the polygonal regions of the partition. We
find the point y using a well-known result in fixed point theory: Knaster-Kuratowski-Mazurkiewicz
lemma (see [6, Theorem 5.1] for a simple proof). At the end of the proof, we return from disks back to
points and we have to solve the problem where to assign points whose disks intersect the boundaries
of the partition. We present the details in the full version.
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“/pl ° 2 Q@

Figure 1: Illustration of a partition from Lemma 4. Region 1 contains two fewer blue points than it
contains red points. Region Q2 contains the same number of blue points as red points. And the same
holds for @X3. The arrows indicate to which regions belong the points on the boundaries.

Figure 2: Left: Inside the polygon P we find a triangle ap;pj;1 and apply Lemma 4 to split the
polygonal region into three parts (01, Q2, Q3. The induction hypothesis can then be applied to ()1 and
(23 to obtain a complete partition of the polygonal region.

Right: In the first step of the partitioning of the convex polygon P we sometimes use a half-line [ and
partition regions Q* and @’ by induction.

To prove Theorem 3, we use induction on the number of vertices of the polygon P. The main
idea is to find a suitable triangle formed by vertices of P, and apply Lemma 4 to this triangle. We
set the numbers ny,n2,n3 so that we obtain three polygonal regions Q1, Q2 and @3 each containing
|Qill 5 — [|Qil| g edges of P. Then we partition @1, @2 and Q3 by induction. Note that except for the
very first step, we are partitioning bounded polygonal regions instead of the plane, and the polygon P
is already partially split but that is only easier. See Figure 2, left.

Unfortunately, finding the very first triangle is not always possible. However, if that is the case, then
we can find a diagonal p1p; of P and a half-line / shooting from p; such that [ and the half-line pip;
split the plane into two polygonal regions @Q* and @’ that can be partitioned by the normal induction
process. See Figure 2, right. We present the details in the full version.

4 Conclusion of the proof

To finish the proof of Theorem 1, we use a result proved by Abellanas et al. [1] about point sets with
color classes separated by a line. We use a slightly modified version that easily follows from the proof
of the original version.

Theorem 5 ([1]). Let R be a set of red points and B be a set of blue points such that RU B s in
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Figure 3: An alternating Hamiltonian cycle in a case when 6 red points form a polygon separating the
remaining 6 red points from 12 blue points lying inside the polygon.

general position. Assume that |R| — |B| =1 and that there are two points ri,rm9 € R such that the line
rire separates R from B and that r1,r9 are vertices of the convex hull conv(R U B). Then there exists
an alternating Hamiltonian path on RU B with end vertices r1,75.

We apply this theorem several times to the partition obtained by Theorem 3 to finish the proof of
Theorem 1.

(Idea of the) proof of Theorem 1. We may assume that |R| = |B| and prove that there exists an alter-
nating Hamiltonian cycle, otherwise, we could add one point and remove it at the end. Let R’ = R\ P.
That is, R’ contains exactly the points of R that are not vertices of P. Therefore, s = |B| — |R/|.

By Theorem 3 applied on the polygon P, the set of blue points B and the set of red points R, there
exists a partition of the plane into convex polygonal regions @1, ..., Qs such that for every i, the edge
pipi+1 is a diagonal of @);, and for every 4, the region ); contains exactly one more blue point than red
points of R'.

By Theorem 5 applied to each @); separately, we obtain an alternating Hamiltonian path in each Q);
with ends in p; and p;4+; covering all red and blue points inside @);. These paths are connected together
in the end vertices p;. Therefore, together they form an alternating Hamiltonian cycle. See Figure 3
for an illustration.

O]

5 Conclusion and open questions

The main technical part of our proof is Theorem 3. We believe that the following stronger version that
also generalizes Lemma 4 holds.

Conjecture 6. Let Q be a convex polygonal region, P = (p1,...,ps) be a convex polygon inside @), B
be a set of blue points in the interior of P, and R be a set of red points outside P but inside () such that
RUBU{p1,...ps} is in general position. Additionally let ny, ..., ng be integers satisfying the following
conditions.

1. |B| = |R|=n1+ -+ ns.
2. For every nonempty cyclic interval of indices I from {1,..., s},

Zm > — HQ N UOUt(pipi+1)

el el

R

128



Discrete Mathematics Days, Alcald de Henares, July 3-5, 2024

Then there exists a partition of QQ into convex polygonal regions Q1,...,Qs such that for every i, the
segment pipiy1 1s a diagonal of Q; and ||Q;|| g — ||Qill p = ni. Moreover, every point of RUB is counted
in exactly one Q;.

Similarly, as for Lemma 4 we observe that the conditions established by Inequation (2) are necessary.

The case when there are no red points outside of P and every n; is a positive integer was already
proved by Garcia and Tejel [10] and later by Aurenhammer [3]. The case with points outside of P
seems to be more difficult (for example, even some negative n;’s can satisfy the conditions established
by Inequation (2) in that case).

Similar problems of finding partitions of colored point sets into subsets with disjoint convex hulls
such that the sets of points of all color classes are partitioned as evenly as possible is well studied,
see [4, 5]. However, we were not able to apply the results directly because we have the additional
restriction that p;p;+1’s have to be diagonals of the convex hulls in the partition. We managed to prove
Conjecture 6 only in the case when s = 3 (Lemma 4) and that proved crucial in proving Theorem 3.
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Abstract

A matroid port is a clutter (antichain of sets) determined by the collection of circuits of a matroid
that contain a fixed point. We study the problem of determining matroid ports all whose elements
have the same size h. This problem has been studied from the cryptographic perspective and it is
related to an analogous problem in matroid theory. We give some general results and then focus on
the binary case. We recast some known results and find all 4-homogeneous binary matroid ports.

1 Introduction

A clutter is a collection of sets that are mutually incomparable with respect to inclusion; the support
of a clutter A is UgeaA. For a matroid M on the ground set E, the collection of its circuits C(M)
forms a clutter (as do the collections of bases or hyperplanes). We are interested in another clutter
derived from the circuits of a matroid. For an element p € E, the matroid port of M at p is the clutter
M,, defined as!

M,={C—-p:CeCM),peC}.

A clutter A with support € is said to be a matroid port if A is the port of some matroid Ma with
ground set E' = QU p with p € Q (we refer to Section 2 for more details on how Ma is constructed).
Matroid ports were introduced by Lehman [2] in connection with game theory, and they are a key
structure in the theory of secret sharing [6], both for the characterization of ideal access structures and
to obtain bounds on the optimal information rate of the scheme.

In this paper we focus on the problem of determining the matroid ports all whose elements have the
same size. We say that a clutter A is h-homogeneous if |A| = h for all A € A, and we call h the rank
of the clutter?. Our motivation for studying this problem is twofold, as we next explain.

A particular family of h-homogeneous matroid ports are those that arise as ports of matroids all
whose circuits have size h + 1. Unfortunately, determining such matroids is a hard problem. In [§],
Murty determined the binary matroids all whose circuits have a given size. As we will see throughout
this work, there are usually many more h-homogeneous binary matroid ports than matroids all whose
circuits have size h+ 1, since being an h-homogeneous matroid port only gives information on the sizes
of the circuits that contain p. In particular, for even h it is proved in [8] that there is only one binary
matroid with circuits of size h + 1 (a single circuit), but we will see in Section 4 that 4-homogeneous

*The full version of this work will be published elsewhere.

TEmail: jaume.marti@upc.edu. Research of J. M.-F. is supported by AGAUR, Generalitat de Catalunya, under project
SGR-Cat 2021 00595 and by Universitat Politecnica de Catalunya under funds AGRUP-UPC.

fEmail: anna.de.mier@upc.edu. Research of A. dM. is supported by the Grant PID2020-113082GB-I00 funded by
MICIU/AEI/10.13039/501100011033.

!We use the common convention in matroid theory to write A — b, A Ub instead of A — {b}, AU {b}.

2In the few places we use the word ”rank” to refer to the rank of a matroid it will be said clearly.
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binary matroid ports are much richer. The question of determining matroids whose circuit-sizes belong
to a small, fixed set, has also been studied [3], but the results do not seem applicable in our situation.

In addition to the relationship with the purely matroid theoretic question studied by Murty, the
problem of determining h-homogeneous matroid ports is of interest in the context of secret sharing
schemes in cryptography. Specifically, from the results in [6] it follows that to provide a complete
description of h-homogeneous matroid ports is equivalent to characterizing the access structures of the
ideal secret sharing schemes whose minimal qualified subsets have h participants. As far as we know,
the only results in this direction have been obtained in [1, 4, 5] for the cases h = 2 and h = 3. The
tools used in these works are mostly of a cryptographic nature. It is also one of our goals to present
these results in a unified, more combinatorial way.

This work has two main contributions. First, we develop some reductions and general results that
are applicable to any h and to all kind of ports, whether binary or not. Then, we treat the concrete
case of h = 4 in the binary case, providing a complete description of 4-homogeneous binary matroid
ports. The proofs will be included in a full version of this extended abstract.

We conclude this introduction by mentioning that we are not aware of results for the case h > 5 in
general, or for the non-binary case for h = 3,4. We feel that many of our techniques can be applied
in the binary case for h > 5, but we are far from even conjecturing a list of 5-homogeneous binary
matroid ports.

2 Preliminaries and reductions

We review in this section several results and characterizations about matroid ports and binary matroid
ports. We refer to Oxley’s book [9] for all terms and results in matroid theory.

A connected matroid M is determined by any one of its ports M,. We state next the description
of the circuits of M in terms of the sets in the port. We use the notation A; & As to denote the
symmetric difference of A; and Ay. Also, by min({Bi,...,B,;,}) we denote the inclusion minimal
elements of {B1,...,Bn}.

Theorem 1. (/2], [9, Thm. 4.53.8]) Let A be a matroid port with support Q). Then there is a unique
connected matroid Ma on QU p. Moreover, the circuits of Ma are

C(MA) = {AUp : A€ A} Umin({A1 OA Ayt A, Ao e AV A # AQ}),

where
A1 Oa As :(A1UA2)\ m A.
ACAUA
AeA

A clutter A on a finite set F is said to be a K-representable matroid port if it is the port of a matroid
M representable over the field K. In particular, Fo-representable matroid ports will be called binary.

Before stating characterizations for matroid ports and binary matroid ports, we need one more defi-
nition. The blocker of a clutter A on FE is the clutter b(A) =min({BC E: BNA#( for all A€ A}).
It is well-known that b(b(A)) = A . For matroid ports, it is not difficult to check that b(M,) = (M*),,
where M* is the dual of M. Thus, the blocker of a matroid port is again a matroid port. As the dual of
a K-representable matroid is also K-representable, the blocker of a binary matroid port is also a binary
matroid port. Note though that the blocker of an A-homogeneous clutter need not be homogeneous.

Theorem 2. 1. The clutter A is a matroid port if and only if whenever Ay, Ay, A3 € A and x €
(A2 N A3) \A1 there is A € A with A C ((Al OA Ag) U Ag) \ {x}

2. The clutter A is a binary matroid port if and only if either of the following two statements holds:

(a) For all A € A and for B € b(A) the intersection AN B has odd cardinality.
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(b) If A1, Ay, A3 € A, then there exists A € A with A C A1 © Ay © As.

For a proof of this theorem, we refer to [10] and [11]. We mention that there are several other
characterizations of matroid ports that range from excluded minors [10, 11] to independent sequences
and bounds on the optimal information rates in secret sharing schemes [6, Theorem 4.4]. Although we
do not use these characterizations, we use the notion of minors of matroid ports in some constructions,
so we review them here.

Let A be a clutter with support Q and let Z C Q. The deletion of Z is the clutter A\ Z given by
A\NZ ={ACQ\Z : Aec A}; we refer to the clutter A\ (Q\ Z) as the restriction of A to Z, denoted
by A|Z. The contraction of Z is the clutter A/Z given by A/Z = min({A C Q\Z : A\ Z € A}).
When A is the clutter of circuits of a matroid, these definitions give the usual notions of deletion and
contraction in matroids (and we write M /Z instead of C(M)/Z, and so on). Every clutter that can
be obtained from A by repeatedly applying the operations \ and / is called a minor of A. Minors of
matroid ports are matroid ports: indeed, we have M, \ Z = (M \ Z), and M, /Z = (M /Z),.

We say that the clutter A is path-connected if for all z,y € ) there is a sequence Ay, ..., A with
Aie A,z e A,y € Ay and A; N A; # 0 (if the sets of the clutter are thought of as the hyperedges
of a hypergraph, path-connectivity becomes connectivity in the hypergraph). We say that = and y
are at distance k in A if k is the smallest integer for which such a sequence exists. For any clutter
A there exists a unique partition Q = Q; U --- U Qg such that the restrictions A|Qq,..., A|Qs are
path-connected and A = A|Q; U--- U A[Q,. In this situation we say that A[Qq,..., Al are the
path-connected components of A. It is clear that a clutter is h-homogeneous if and only if each of its
path-connected components is h-homogeneous.

In the particular case that the clutter is a matroid port M,, being path-connected is equivalent
to the matroid M not being a parallel connection of two smaller matroids (see [9, Sec. 7.1] for the
definition and properties of parallel connection). From this one obtains the following characterization.

Lemma 3. Let A be a clutter whose path-connected components are Aq, ..., Ay,. Then A is a matroid
port if and only if Aq,..., A, are matroid ports. Moreover, for any field K, A is a K-representable
matroid port if and only if A+, ..., Ay are K-representable matroid ports.

It was shown in [7] that the diameter of a path-connected matroid port is at most two (by the
diameter we mean, as usual, the maximum of the distances). The following lemma gives a condition
for adding sets to an hA-homogeneous binary matroid port of diameter 2 so that the result is an h-
homogeneous binary matroid port of diameter 1. The proof is based on checking condition 2.(a) in
Theorem 2.

Lemma 4. Let A be a path-connected, h-homogeneous binary matroid port with support € such that its
blocker b(A) contains the pairs {x1,y1}, {x2,y2}, ..., {xs,ys} (with all the x;,y; different among them,).
Then s < h. For s = h, let 23,...,2z, € Q and define A" = AU {{x;,yi,23,...,2n} : 1 <i < h}. If
b(A) contains no set of the form {v1,..., v} with v; € {x;,y;} and t < h then the clutter A’ is an
h-homogeneous binary matroid port.

In addition to restricting to path-connected clutters, we introduce some other reductions. Two
elements z, y in a clutter A are equivalent if for any A € A we have |[AN{z,y}| <1, and if |[AN{z,y}| =1
then Ao {z,y} € A. It is easy to check that equivalent elements in a matroid port M, correspond to
parallel elements in M. An element ¢ in a clutter is called universal if ¢ € (45 A. If a matroid port
M, has a universal element ¢, then {p, ¢} are a series pair in M (a parallel pair in M*). The reduction
of a clutter A is the clutter A4 obtained by removing all but one copy of each equivalence class and
removing all universal elements.

Lemma 5. A clutter A is a matroid port (resp. is a K-representable matroid port) if and only if its
reduced clutter A*4 is so. Moreover, if A has exactly t universal elements, then A is h-homogeneous
if and only if A4 is (h — t)-homogeneous.
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We say that a clutter is reduced if it is path-connected and A™ = A. By Lemmas 3 and 5, we
can restrict to h-homogeneous reduced matroid ports (although in some of the results in the following
section we drop this restriction if the result is sufficiently simple to state it in general).

3 Homogeneous matroid ports of ranks 1, 2, 3, n — 1 and n

Let A be an h-homogeneous clutter with support €, where |Q2] = n. For h = 1 and h = n, the
characterizations of Theorem 2 imply that A = {{z1},...,{z,}} and A = {{z1,...,2,}} are binary
matroid ports. The following proposition deals with the case h = n — 1. The proof consists in checking
that the collection C(Ma) as in Theorem 1 is indeed the collection of circuits of a matroid.

Proposition 6. Let A be an (n — 1)-homogeneous clutter with support Q with n = |Q|. Then, A is a
matroid port. Furthermore, A is a binary matroid port if and only if |A| = 2.

Now let us consider the case h = 2. Note that a 2-homogeneous clutter with support 2 can be
thought of as the edges of a graph with vertex set Q (and no isolated vertices). For the complete
multipartite graph G = Ky, . n,, for £ > 2 and n; > 1, the clutter E(G) is a matroid port. Indeed, the
reduced clutter E(K,, )™ is the set of edges of a complete graph K, and E(K) is the port of a
uniform matroid Us 41 at any of its points. By adding equivalent elements we obtain E (K, . n,). As
Us 4 is the excluded minor for binary matroids, the only one of these ports that is binary is E (K, n,)-

The following result states that these are the only 2-homogeneous matroid ports. It can be proved
directly by using the characterizations of matroid ports in the previous section, or by combining results
about secret sharing schemes from [1] and [6].

Theorem 7. Let A be a path connected 2-homogeneous clutter. Then A is a matroid port if and only
if A is isomorphic to E(Ky, .. n,), and it is is a binary matroid port if and only if A is isomorphic to
E(Knyn,)-

Finally, in Theorem 8 we present the description of 3-homogeneous reduced binary matroid ports.
The clutters involved in this theorem are defined as follows. The clutter Az g is the clutter whose ele-
ments are the 7 lines of the Fano plane; that is, Az g = {{a1, a2, az}, {a1, a4, a7}, {a1, a5, a6}, {az, as, as},
{az2,as,a7},{a3, a4, a5}, {as, as, ar}} (as noted in [5], Az is the port of the binary affine cube AG(3, 2)
at any of its points). The clutter Az is Az \ a7 (which can also be thought of as the set of 3-cycles
of K4). We remark that Az can be constructed from Ag; by using Lemma 4 (and checking first that
A3 is binary, for instance by using Theorem 2).

Theorem 8. Let A be a reduced 3-homogeneous clutter. Then, A is a binary matroid port if and only
if A is isomorphic either Az or Az 1.

There are several ways of proving this theorem; one of them is by carefully analysing the circuits of
M as given by Theorem 1 and showing that if A is a 3-homogeneous binary matroid port, then Ma
is a matroid all whose circuits are of size 4. Thus, one can then apply the results by Murty [8].

Alternatively, Theorem 8 follows from the results in [5] and [6] by relating matroid ports to ideal
secret sharing schemes. Moreover, from these papers one can show that if A a 3-homogeneous non-
binary matroid port then A is the port of a matroid of rank three. An example is the clutter defined
by the non-Pappus configuration, obtained by taking all 3-element subsets of a set of size 9 except
those that are lines in the non-Pappus matroid (see [5, Example 3.5]). As far as we know, the complete
description of non-binary 3-homogeneous matroid ports is an open problem.

4 Homogeneous binary matroid ports of rank 4

For 4-homogeneous matroid ports, there are no known results from the secret sharing community, and
the results from [8] do not shed much light, as there is only one binary matroid all whose circuits have
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Figure 1: A geometric representation of the binary 4-spike. The hyperplanes avoiding p are in bijection
with the sets in the port Ay ;.

size 5 (namely, a single 5-circuit). Note that the corresponding matroid port has just one set, a case
already commented at the beginning of Section 3.

Before stating our main result, we need to introduce yet one more reduction, which can be seen as
an extension of equivalent elements.

Let A be a 4-homogeneous binary matroid port. We say that the pairs {aj,as2} and {b1,bs} are
clones if the following three conditions hold

o |[An{ai,az,b1,ba}| #1 forall A€ A;
o {a;,bj} £ Aforany Ae Aand1<i,j<2;
e {aj,as,z,y} € Aif and only if {b1,be,z,y} € A for all z,y € E.

Since the property of being binary and 4-homogeneous is preserved under deletion, the removal of
one of the pairs {ai,as} or {b1, by} still leaves a binary 4-homogeneous matroid port. Next we consider
the reverse process, that is, when it is possible to add a pair of clones. The proof of the following
lemma consists in checking condition 2.(b) in Theorem 2.

Lemma 9. Let A be a binary 4-homogeneous matroid port such that there are two elements {ai,as}
with the property that |AN{a1,as}| € {0,2} for all A € A. Let by, by be two elements not in the support
of A. Then the clutter A" = AU{A\ {a1,a2} U{b1,b2}| {a1,a2} C A € A} is binary.

Thus, we can assume that A is clone-free. Theorem 10 states that there are only four 4-homogeneous
binary matroid ports that are reduced and clone-free. We next define these four clutters, and show
that they are indeed binary.

The clutter Ay is the following

Agy = {{z1, 22, y3, v}, {21, T3, Y2, wa}, {w2, T3, y1, 24}, {y1, v2, Y3, 24},
{$1> Y2,Y3, y4}7 {:U27 Y1,Y3, Z/4}7 {5637 Y1,Y2, y4}> {xla T2, X3, y4}}
It is a binary matroid port since b(Ay 1) is the port of the binary 4-spike at its tip (Figure 1 shows
a geometric representation of the binary 4-spike; the elements of A4 are given by the complements of

the planes that do not contain p, with p removed).
If we apply Lemma 4 to Ay 1, we obtain the binary matroid port Ay :

Ao = {{z1, 22,93, 24}, {x1, 23, Y2, x4}, {22, 3, y1, 24}, {y1, Y2, y3, 24},
{1, 2, 3, ya}, {z2, y1,¥3, yat, {23, y1, Y2, ya}, {x1, 22, 23, Y4},
{1, y1, 21, 22}, {22, Y2, 21, 22}, {w3, y3, 21, 22}, {@4, ya, 21, 22} }.
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Finally, Ayo = Ay \ 24 and Ayz = Ay \ {z4,y1}. All other deletions of Ay give ports isomorphic
to Ay, Ay or Ays, or are not reduced. Note that Ay = Ay \ 21, but checking that Ay is binary
directly is more involved than constructing it from Ay .

Theorem 10. Let A be a reduced 4-homogeneous clutter without clones. Then, A is a binary matroid
port if and only if A is isomorphic to either Ay, or Ay, or Aygo, or Ays.

The proof of Theorem 10 is long and entirely new, in the sense that it does not rely on previous
results from either the matroid or the cryptographic communities. We give a very short sketch of the
main ideas for the interested reader.

We start with a reduced and clone-free binary matroid port A; being reduced, the clutter A must
contain at least three sets. We exploit the fact that the matroid M is binary and the characterizations
of Theorem 2 to find bounds on the sizes of the intersections of the sets in A. From this a careful case
analysis follows, leading to the four clutters Ay, A1, Ag2 and Ay 3.

The final part of the proof consists in showing that the clutters Ay, for i € {0, 1,2, 3}, are terminal,
in the following sense: there is no reduced and clone-free binary matroid port that strictly contains
Ay p; any reduced and clone-free binary matroid port that strictly contains A4 3 also contains a clutter
isomorphic to Ay 2; and any reduced and clone-free binary matroid port that strictly contains Ay or
Ay 2 is isomorphic to Ayyp.
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1 Introduction

For k > 1, a k-tree is defined recursively as either a complete graph on k + 1 vertices or a graph
obtained by adding a new vertex incident to a k-clique of a smaller k-tree. The class of k-trees plays an
important role in graph theory as it allows for an alternative definition of the tree-width of a graph g
as the minimum £ such that g is a subgraph of a k-tree. In particular, k-trees are the maximal graphs
with tree-width at most k. Tree-width is stable under taking minors, thus from [11] the number of
graphs with n vertices and bounded tree-width grows like p™, for some p > 1, up to some lower order
terms and a factor n! in the case of labelled graphs. However, determining the value of p is a notorious
open problem.

An approach for the enumeration of constrained classes of graphs admitting some recursive decom-
position is to derive a functional equation satisfied by the associated generating function, then compute
asymptotic estimates of its coefficients using methods from complex analysis [8]. A natural operation
to decompose graphs with bounded tree-width is known as the clique-sum of two graphs and consists
in distinguishing a clique of the same size in each of the graphs and identifying together the vertices of
the two cliques to obtain one unique graph, then removing any subset of the edges of the new clique.
This latter step makes the clique-sum operation intractable in the setting of [8]. Note, however, that
this new clique becomes a separator of the resulting graph.

A graph is chordal if every cycle of length greater than three contains at least one chord. Alternatively,
Dirac proved in [6] that a graph is chordal if and only if every minimal separator is a clique. This
characterisation makes the clique-sum operation amenable to recursive methods by restricting it to
chordal graphs. Wormald first used it in [14] to obtain the generating function of labelled chordal
graphs from a recursive system of equations; based on the fact that k-connected chordal graphs can be
uniquely decomposed into their (k+ 1)-connected components, and by rooting the k-connected ones at
k-cliques it is possible to derive an equation defining the generating function of k-connected graphs in
terms of that of the (k+1)-connected ones. If we now consider chordal graphs with tree-width bounded
by some ¢t > 1, then one obtains a finite system of equations from the connected to the t-connected
level, which is in fact composed of the class of t-trees. Thus one can see chordal graphs with tree-width
at most ¢ as a natural generalisation of ¢-trees. This work was continued in [3] to obtain an estimate
for the number labelled chordal graphs with tree-width at most ¢ > 1 and n vertices of the form

en o2 4m as n — oo. (1)
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for some ¢ > 0 and v > 1 depending on ¢t and computable numerically up to any precision.

In his seminal work [13], Pélya developed a theory to encode symmetries of labelled combinatorial
structures, and thus opened the way to enumerate their unlabelled counterparts. Using Polya’s theory,
Otter [12] was able to enumerate unlabelled trees from the rooted ones. His method was generalised
in what is known as the dissymmetry theorem for tree-decomposable structures [1]. Building on that
theory, Gainer-Dewar managed to derive a system of equations from which the ordinary generating
function of unlabelled k-trees can be computed [9]. An alternative derivation was later designed in [10],
and was instrumental in obtaining in [7] an asymptotic estimate for the number of unlabelled k-trees
with n vertices in the form of (1).

In this work, we generalise [9, 10] and derive a system of equations defining the ordinary generating
function of unlabelled chordal graphs with bounded tree-width. Our method is based on the decom-
position into (k + 1)-connected components of chordal graphs rooted at k-cliques, similarly to [14]
and [3], and requires a non-trivial extension of Pélya theory to rooted structures started in [2]. This
decomposition is tree-like in the sense of [1], and we can apply a dissymmetry theorem to “unroot” our
graphs analogous to the tools developed in [2].

Theorem 1. Let t > 1 and k € [t]. Then the class of unlabelled k-connected chordal graphs with
tree-width at most t can be derived from a grammar. Furthermore, this grammar can be translated into
a finite system of equations that completely defines the associated ordinary generating function.

The derivation from Theoreml implies an efficient algorithm to compute the number of unlabelled
k-connected chordal graphs with tree-width at most ¢ and n vertices. In a long version of this work we
intend to prove an asymptotic estimate in the form of (1), following [7] and [3]. Using our grammar,
one can also derive structural results on large random graphs in the class, similarly to what was done
in [3] and [5], as well as design a Boltzmann sampler to generate large uniform random graphs.

2 An extension of Pdlya theory

2.1 Extended cycle index sums

Let A be a class of labelled graphs. A symmetry of A is a tuple (a,0) where a € A and o is an
automorphism of a. The set of all symmetries of A is denoted by S(A). For (a,o) € S(A) and a
k-clique K = {vy,...,v;} of a, with k& > 1, note that there exists a smallest positive integer j such
that 0/ (K) = K. We then say that the k-cliques K,o(K),...,0? 1(K) form a cycle of length j. Note
that o7 restricted to the vertices of K may be different from the identity. And we say that the cycle of
k-cliques has type p, if u F k is the cycle structure of the permutation o7/ restricted to the vertices of
K. If we now let ¢, j(a, o) be the number of cycles of k-cliques of a of length j and type p F k, then
the extended weight-monomial of a symmetry (a, o) of size n is defined as

weor = TTTT T 57"

k=1 pk j>1

From there, we define the extended cycle index sum of A as the sum of extended weight-monomials

of symmetries of A
X_A = Z w(AJ).
(a,0)€S(A)
It is a formal power series and a refinement of the (classical) cycle index sum, as the latter can be

recovered setting sy; = 1, for all A = &k > 1, and s(;); = s;. In order to recover the (ordinary)
generating function of an unlabelled class from its cycle index sum, we recall Pdlya’s classical result.

Proposition 2 (Pdlya [13]). Let A be a class of labelled graphs andU be the class obtained by unlabelling
the graphs in A. Then, if we denote by Z 4(s1,s2,583,...) the cycle index sum of A and by U(z) the
ordinary generating function of U, we have U(x) = Z4(s; — x%)i>1 = Za(x, 2%, 23,...).
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2.2 Symmetries of graphs rooted at cliques

For k£ > 1, a graph in A is said to be rooted at a k-clique if one of its k-cliques K is distinguished,
and the vertices of K are ordered instead of labelled. We denote by A®*) the class of graphs in A that
are rooted at a k-clique, and for a € A% we let r(a) be its root clique. Then an automorphism o of
a € A% ig also required to map r(a) to itself, maybe permuting its vertices.

We consider permutations with cycle type A = (A}*, ..., A\*) F k with a canonical ordering of their
cycles, and recall that in that case there are a(X) := k!/(A[* ... A *ng!. .. ny!) many permutations with
cycle type A. A symmetry (a,0) € S(A®) is said to be A-rooted if |r(a) has cycle type A and the
order of the vertices of r(a) respects the canonical ordering of A. We denote by Sy(A*)) the set of all
A-rooted symmetries of A%). And for (a,o) € Sx(A®) and i € [n], we let ¢;,.;(a,0) be the number of
cycles of i-cliques of a under the action of o with length j and type p b 4, but this time each one of
those i-cliques is not entirely contained in 7(a).

Then the A-rooted cycle index sum of A®) can be similarly defined as

n « .
ijw = Z i11_11_[1_1 C“,}'j(a’ )'

(a,0)€S) (AKF) 1T pkig=>1

In practice, the A-rooted cycle index sum of A*) can be computed from that of A via a formal derivative:

k! 0 . cp,i (K 0)
X)\ = 77)( th HJ ks 2
AT (V) k() O A with #i( H H H Sp,j (2)

i=1 pki j>1

where K}, is the complete graph on k vertices and o is one of its automorphisms.

However, in order to reverse this operation, that is computing the extended cycle index sum of some
class A of unrooted graphs from the A-rooted cycle index sums of A®*) \-rooted symmetries do not
carry enough information and one requires to point symmetries at cycles (see [2]).

2.3 Symmetries of cycle-pointed graphs

For a class of labelled graphs A, rooted or not, a symmetry (a,o) € S(A) is said to be cycle-pointed
when one of the cycles C' of cliques of o is distinguished. If C' is a cycle of k-cliques (k > 1), then the
graph a is said to be k-cycle-pointed, or k-pointed for short. The symmetries of a k-pointed graph a
are then the symmetries (a, o) for which o is pointed at a cycle of k-cliques of a, however if a is rooted
at a k-clique then none of its symmetries can be pointed at a cycle of cliques totally contained in r(a).

We denote by A®* the class of k-pointed graphs in A and by S, (A®F) the class of its cycle-pointed
symmetries. The extended cycle index sum of A% is defined as

Xaow = Z t“HHH 51 (aa,

|
(a,0)eSp(A®k) ’ ‘ i=1 ki j>1

where ) is the type of the pointed cycle of (a, o), ¢ its length, and o ;(a,0) is the number of unpointed
cycles of i-cliques of a with length j and type u F 4. In practice, and following [2], one can derive the
cycle index sum of A® from that of A

Xaor = ZZ]tm “ XA 3)

Mk 5>1 A

Thus, if every graph in A has at least one k-clique then X 4 is completely determined by X 4e,. Denote
by ¥ the operator such that X4 = WU(X 4o ). Then we finally have

X4=U (X o). (4)
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Finally, reproducing the proof methods developed in [13] and [1], combinatorial construction rules
can be readily translated into extended cycle index sums. For instance, if we let A and B be classes of
labelled graphs, rooted or not, and k£ > 1 then, using the language from [8], we have

Xap=Xa+ X5 and  Xuxp=X4- Xz, (5)
X ok = X gon + Xpex and X e = Xpxaw = Xg - X o, (6)
(A+B)* — A% + B and (A x B)™ — A x B% + A% x B. (1)

Note that the same considerations apply to rooted or non-rooted graphs with a distinguished sub-
graph. Precisely, automorphisms have to preserve the root and/or the distinguished subgraph, though
maybe permuting its vertices, and the cycles of cliques entirely contained in the root of a cycle-pointed
symmetry are not taken into account in its extended weight-monommial. Furthemore, extended cycles
index sum, A-rooted symmetries and A-cycle index sums are defined for rooted and/or k-pointed graphs
in the same way.

3 Chordal clique-sums and symmetries

3.1 Substitutions of cliques

Let k£ > 1, A be a class of (possibly rooted) labelled graphs, and B be a class of graphs rooted at a
k-clique. The clique substitution A o B is the class obtained by identifying each k-clique of graphs
a € A with the root of graphs in B. This results in a graph for which the base graph a is now a
distinguished subgraph.

If C = (¢1,...,¢0) is a cycle of cliques and C,...,C} is a sequence of k copies of C, then the
composed cycle of Cy,...,CYy is the cycle of cliques of length ¢k such that for i € [k — 1] and j € [{],
the clique coming after ¢; in Cj is ¢j in Cj 41, and the clique coming after ¢; in C}, iS ¢j41 mod ¢ in C1.
And if we denote by (X A)[ﬂ the cycle index sum resulting from multiplying the second subindex of all
variables by j, that is, sy; — s),;, then the extended cycle index sum of the class A o B is defined
using the classical composition of cycle index sums

(7]
XAokB:XA <S)\7j—>8>\7j' (Xé) > (8)

Ak, j>1

If additionally the graphs in both A and B are unpointed, then we also define the k-pointed sub-
stitution A®t © B as the class of all k-pointed graphs obtained by the following procedure: let first
(a,0) € Sp (A®F) be a symmetry pointed at some cycle C' = (cq, ..., ¢;) with type A, take k copies of a
graph p € B* admiting a A-rooted symmetry, and identify each clique in C' with the root of one of the
copies of p following the canonial order of A. Second, for every unpointed cycle D # C of (a, o) with
type u, choose a graph b € B admitting a u-rooted symmetry, take |D| copies of b and identify each
clique in D with the root of one of the copies of b. The base graph a is now a distinguished subgraph
of the resulting graph and the vertices (except possibly the ones in the root) are assigned unique labels
such that the relative order is preserved.

Furthermore, if C1, ..., Cy are the pointed cycles of the copies of p pasted respectively at ¢y, ..., cg
then the pointed cycle of the resulting graph is the composed cycle of Cy,...,C;. Note that this
construction also works if p is a j-pointed graph with j # k. In that case the resulting graph is
j-pointed. Adapting [2], it can then be shown that the k-pointed substitution A®* @ B is a class
of k-pointed graphs, that is, every graph admits a symmetry pointed at the cycle of k-cliques. The
extended cycle index sum of A®* © (B, P) is then obtained via the k-pointed plethystic composition of
their extended cycle index sums, whose definition is an extension of [2]

] -
Xaoroys = Xaow O Xp 1= X go0 (SM» - (Xg) g — (Xg.k)m) : 9)

and where i, j > 1, and A and p both range over the partitions of k.
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3.2 Starlike chordal clique-sum

Let A be a class of labelled graphs. The starlike chordal clique-sum of A is the class of rooted
graphs star(A) obtained by taking a multiset of graphs from A% identifying their rooted k-cliques
together, and relabelling all the other vertices respecting their previous relative order. Then the A-
rooted extended cycle index sum of star(A) is

1 o\ 1]
Xar(a) = ©XD Z; (Xj\](k)) ; (10)
i>1

where M denotes the cycle type of o7 if o has cycle type A.

Similarly, for £ > 1 we define the ¢-pointed starlike chordal clique-sum of A as the class stary (A) of all
the rooted and k-pointed graphs obtained by choosing some multiset S of elements of A%*) considering
J > ¢ disjoint copies p1,...,p; of some p € A%, and then identifying together the rooted cliques of all
the graphs in S and the rooted cliques of p1,...,p;. Again, we relabel the non-root vertices to preserve
the relative order. Furthermore, if C1, ..., Cj; are the pointed cycles of p1, ..., pj, respectively, then the
pointed cycle of the resulting graph is the composed cycle of C1,...,Cj. One can then show that every
graph in stary (A) admits a symmetry containing the pointed cycle of k-cliques as one of its cycles of
cliques. In fact, the converse is also true and we have star (A4)** = star; (A).

If, for £ > 1, we now let

., 0 S
Zsetg (81,t1,82,t2,...)22jtj %exp Zi )
J

- g
j>¢ 121

then the A-cycle index sum of star, (A) is given by

NG N7
Xgtary(4) = Zset, (Si% (X%) ot (x2%) ) '
i>1,5>¢

4 Counting chordal graphs with bounded tree-width

Fix t > 1, and for any k € [t + 1] let Gy, (resp. G*) be the class of labelled k-connected chordal graphs
with tree-width at most ¢ (resp. and that are k-pointed). Note that G, is reduced to the (t+41)-clique,
with cycle index sum
1
X6 = — a(A)k(N). (12)
w2
From there, the relation (2) gives us the class gt(i)l. Fix now some k € [t] and some A - k. Then,

adapting the scheme from [3] and provided we know g,g’i)l, we can obtain by iteration the class g,g’“) as
a solution of the recursive equation

Q,E;k) = star (g,g’fgl Ok g,ﬁ’“)) : (13)

To now obtain G from g,i’“), we proceed following [2], by using the dissymmetry theorem for tree-
decomposable classes [1] on G;*, which can be derived by adapting [3]. This gives

G2 = G + (G) %y 01 6 + stars (6%, 04 G (149
where the extended cycle index sum of (Gx41)¥; is defined as in (3) but without the terms with j = 1.

Equations (13) and (14) relating combinatorial classes can then be translated into relations between
extended cycle index sums using the various identities derived in Sections 2 and 3.
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Finally, starting from (12) and by successive iterations of the recursive step (13), the cycle pointing
step (3) and the unrooting step, composed of (14) together with (2) and (4), we can obtain Gj for
any k € [t|]. In practice, we are able to compute its extended cycle index sum and the associated
generating function, using Proposition 2, whose n-th coefficient is the number of unlabelled graphs
with n vertices. We provide an effective implementation of the algorithm computing any term of the
generating function on this repository, and as an example display next the first numbers of unlabelled
chordal graphs with tree-width at most ¢, connectivity & and up to ten vertices.

t=1 t=2 t=3 t=4

k=1 111236112347 106 11241135124 500 2224 10640 11251453 234 1265 8015 58490 11251557 266 1556 11187 97859
k=2 - 0111251239 136 529 011241455293 1842 13491 0112517 75455 3486 32907
k=3 - 00111251558275 0011241462391 3182

k=4 - 000111251564

The last non-empty line of column ¢ corresponds to unlabelled t-trees, while the line £ = 1 of the
second column corresponds to connected chordal series-parallel graphs with OEIS sequence A243788.
To the extent of our knowledges, the other sequences are new. Note that an algorithm was designed
to compute, among others, the first numbers of unlabelled chordal planar graphs (OEIS sequence
A243787). The first discrepancy between A243787 and the line £ = 1 of the third column is given by
the unique non-planar connected chordal graph with tree-width three and six vertices: it is the starlike
chordal sum of three K,’s at a common triangle. By adapting [4] to the context of Pdlya theory, we
believe that a similar program could be developed in order to obtain additional terms of the ordinary
generating function of unlabelled chordal planar gaphs with n vertices as well as an asymptotic estimate
in the form of (1).
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Abstract

The Borsuk problem asks for the smallest number such that any bounded set in n-dimensional
space can be cut into that many subsets with smaller diameter. It is a classical problem in combina-
torial geometry that has been subject of much attention over the years, and research on variants of
the problem continues nowadays in a plethora of directions. In this work, we propose a formulation
of the problem in the context of graphs. Depending on how the graph is partitioned, we consider
two different settings dealing either with the usual notion of diameter in abstract graphs, or with
the so-called continuous diameter for the locus of plane geometric graphs. We present a complexity
result, exact computations and upper bounds on the parameters associated to the problem.

1 Introduction

In 1933, Borsuk posed the question of whether every bounded set X in R? could be partitioned into
d+ 1 closed (sub)sets each with diameter smaller than that of X [1]. In this context, the diameter is
defined as the maximum of the distances between two points in the set, under the Euclidean metric.
This leads to the concept of Borsuk number. For a set X C R?, the Borsuk number b(X) is the smallest
number such that X can be partitioned into b(X) subsets, each with diameter smaller than X . Borsuk’s
question can be thus stated as whether b(X) < d + 1, for any bounded X C R?. The answer to this
question was shown to be positive for d = 2,3 [4, 10], and for general d for centrally symmetric convex
bodies [11] and smooth convex bodies [6]. The general answer turned out to be negative, as shown
in 1993 by Kahn and Kalai [8]. Since then, researchers have been trying to figure out the smallest
dimension for which the partition does not exist, being d = 64 the currently best [7]. Many variants of
the Borsuk problem have also been studied, see [12] for a recent survey.

We present a formulation of the problem in the context of graphs. Conceptually, we define the
Borsuk number of a graph as the smallest number b(G) such that G can be partitioned into b(G)
subgraphs, each with smaller diameter than the original graph. However, we need to define carefully
how a graph can be partitioned. We propose two natural ways to do this, which lead to two variants
of the problem: the discrete and the continuous Borsuk number of a graph. We define these formally
in Section 2. Sections 3-5 contain our study on both parameters, encompassing a complexity result,
exact computations and upper bounds. Proofs are omitted due to the page limit, although we very
briefly explain the key ideas to prove our main results; they are based on an accurate analysis of how
shortest paths and distances can change when modifying a graph.

*This research is supported by Grant PID2019-104129GB-100 funded by MICIU/AEI/10.13039/501100011033.
tEmail: jeaceres@ual.es.
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1.1 Preliminaries

The distance between two vertices in an abstract graph G is the length of a shortest path connecting
them. The diameter of G, denoted by diamy(G), is the maximum distance between any two vertices
of G. A plane geometric graph is an undirected graph G = (V(G), E(G)) whose vertices are points in
R?, and whose edges are straight-line segments, connecting pairs of points, that intersect only at their
endpoints. Each edge e has a length, |e|, equal to the Euclidean distance between its endpoints. The
locus G of a plane geometric graph G is the set of all points of the Euclidean plane that are on (the
edges of) G. In contrast to (abstract) graphs, in G, there can be an infinite number of pairs of points
whose distance is equal to the diameter. Here, the distance between two points is again the length of a
shortest path between the points, but now such a path will contain up to two fragments of edges if the
points are not vertices. The diameter of G or continuous diameter of G, diam.(G), is the maximum
distance between any two points in G. Two points whose distance attains this value are called diametral
points, and the shortest paths connecting diametral points are diametral paths. Problems dealing with
the continuous diameter of a graph, also called generalized diameter [3], have received considerable
attention recently, see [2, 5]. In the continuous case, we treat G and G, interchangeably, as a closed
point set, and assume that the distance between the endpoints of edge e is |e|.

2 Definitions of Borsuk number

2.1 Continuous Borsuk number

We consider a plane geometric graph GG and partition its locus G by a sequence of cuts with straight
lines. A line ¢ naturally partitions G into two geometric subgraphs (possibly, one empty). Moreover, to
guarantee that the partition by ¢ does not produce a disconnected subgraph, we add to both subgraphs
the longest segment in ¢ that has its endpoints in G U ¢; this maximal segment is denoted by s. So,
actually, the partition gives two subgraphs of G U ¢, which are:

Gi=0{("NG)Us and Gy= (" NG)Us,

where 1 and ¢~ are, respectively, the open half-planes above and below ¢ (right-left for vertical lines.)

We define the continuous Borsuk number of G or Borsuk number of G, and denote it by b.(G), as
the minimum cardinality of a partition of G by lines ¢1, ..., ¢, into subgraphs G, ..., Gy such that
max{diam.(G1),...,diam.(Gg+1)} < diam.(G). In order to guarantee that the intersection with a line
creates at most two subgraphs, each line ¢; is inserted only into one of the existing subgraphs.

Figure 1(a) illustrates this definition for a square. After partitioning the square with a vertical
line ¢ (dashed) through its center point, we obtain two subgraphs: all points of G on each halfplane
induced by ¢, union the maximal segment in ¢ intersecting G. Since this partitions the graph into two
subgraphs (of G U ¢), each with smaller diameter than that of G, its continuous Borsuk number is two
(best possible). However, sometimes more subgraphs are needed. The example in Figure 1(b) shows
a 4-star graph, requiring at least two lines, giving continuous Borsuk number three. Note that the
continuous diameter can increase when inserting a line, due to distances between points on the graph
and new points on the line, see Figure 1(c).

One of the main open questions in this continuous setting is whether b.(G) can be upper-bounded
by a constant. The following proposition gives a linear upper bound on the number of vertices of G.

Proposition 1. Let G be the locus of a plane geometric graph with n vertices. Then, b.(G) < 2n — 1.

Proof. (Brief sketch.) Consider a direction not parallel to any of the edges of G; assume for simplicity
that this is the vertical direction. For € > 0, we split G by 2n vertical lines into 2n — 1 subgraphs; there
are two lines associated to each vertex, one to the left and the other to the right, both at distance &
from the vertex. Thus, there are 2n — 1 vertical strips, each containing either only portions of edges
of G, or only one vertex and portions of edges. Each resulting graph, Gi,...,Go,_1, is in one of these
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Figure 1: (a) A square with side length 1 and diameter 2 (given by green paths), and a partition with
a line; (b) a 4-star partitioned into three subgraphs by inserting two lines; (c¢) the continuous diameter
increases when inserting the dashed line into the tree (p, ¢ is a diametral pair.)

strips. Analyzing the different types of diametral pairs of points that may have been generated in
these graphs G;, we can prove that their diameter is smaller than diam.(G). It is worth noting that
this construction does not work using only n lines, since the width of the strips containing a vertex
of G must tend to zero, in order to avoid diametral pairs of points located on the inserted lines whose
distance is larger than the original diameter. O

2.2 Discrete Borsuk number

We now consider partitions of an abstract graph G by simply deleting edges; here all edges have
the same length, equal to 1. The discrete Borsuk number of G, denoted by by(G), is the mini-
mum cardinality of a partition of G by deleting edges into subgraphs Gfi,...,Gy (of G) such that
max{diamy(G1),...,diamy(G)} < diamy(G). The following observation gives some simple examples.

Observation 2. (i) If G is a path or a cycle of even length, by(G) = 2.
(ii) If G is a cycle of odd length, by(G) = 3.
(i1i) If G is a star graph on k + 1 vertices, bg(G) = k.

In Section 5, we study the Borsuk number of an arbitrary tree 7', in both, the discrete and the
continuous setting. We show that while b.(7) is bounded by a constant, bg(7") can be linear with the
number of vertices (as happens for the star). This linearity of the discrete Borsuk number also occurs
in other families of graphs, such as unicycle graphs and maximal outerplanar graphs that are not trees.

3 Computational complexity

The problem of deciding whether the discrete Borsuk number of a graph G is below a given threshold
is related to the minimum clique cover problem. A clique cover of a graph G is a partition of its vertex
set into cliques. The clique cover number of G is the minimum size of a clique cover. The minimum
clique cover problem seeks for a minimum clique cover.

Lemma 3. The clique cover number of a non-complete graph G is an upper bound of by(G), and both
numbers coincide when diamg(G) = 2.

Theorem 4. Let G be a graph, and let k be a positive integer number. The problem of deciding whether
by(G) < k is NP—complete.

Proof. Let G be a graph such that diamg(G) > 1 (otherwise, G is a complete graph, and by(G) is simply
the number of vertices of G, since all edges need to be removed to have each connected component
with diameter zero.) The cone Cg of G is the graph obtained from G by adding a new vertex adjacent
to all the vertices in G. The graph G has a clique cover of size k if and only if Cq has a clique cover of
size k. Since diamgy(Cg) = 2, by Lemma 3, the clique cover number of C¢ is precisely by(C¢q). Thus,
the result follows from the fact that deciding whether the clique cover number of an arbitrary graph is
below a given threshold is an NP—complete problem [9]. O
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Figure 2: A graph that is monotone with respect to the z-axis; G’ U F consists of the graph (in black)
and the gray region. Red vertical lines either intersect G U F; at a single point or at a segment.

We conjecture that the problem in the continuous setting is also NP-hard, but, at the moment, a
proof remains as future work.

4 Continuous Borsuk number of monotone graphs

Let G be a (plane geometric) graph, and let G U F; be the part of the plane formed by the graph
itself and all its interior faces. The graph G is said to be £-monotone if the intersection of any line
perpendicular to ¢ with G U Fy is either a single point or a segment; see Figure 2. We extend naturally
this concept to the locus G. For an /-monotone graph G, and a line ¢/ perpendicular to ¢ that is moving
from left to right (parameterized by £ N ¢'), we define the functions d*(¢') = diam.((¢'* N G) Us’) and
d-(0') = diam.((¢{'~ NG) Us'), where s is the maximal segment of ¢’ intersecting G.

Lemma 5. The functions d*(¢') and d~(¢') are monotone, respectively, decreasing and increasing.

The continuous diameter can increase when partitioning a graph (see Figure 1b) but, as a straight-
forward consequence of the preceding lemma, we obtain that this is not true for monotone graphs.

Corollary 6. The functions d*(¢') and d~(¢') associated to an {-monotone graph G are upper-bounded
by diam.(G).

In order to bound the continuous Borsuk number of a monotone graph, we introduce the concept
of diametral set. The diametral set D(p,q) C G of a diametral pair p,q is defined as the union of
all the shortest paths connecting p and g. Note that, for example, a cycle has an infinite number of
diametral pairs of points, but only one distinct diametral set, which is the whole cycle (the union of
the two diametral paths for each diametral pair is the same, the cycle). Thus, while a graph can have
an infinite number of diametral pairs of points, we next state that this is not the case for diametral
sets, which is key to prove Theorem 8 below.

Lemma 7. Let G be the locus of any plane geometric graph with n vertices. The number of distinct
diametral sets of G is in O(n?).

Theorem 8. Let G be an £-monotone graph such that there are no k+1 disjoint diametral sets. Then,
be(G) < k+2.

Proof. (Brief sketch.) By Corollary 6, in order to reduce the original diameter when cutting by lines,
it suffices to intersect the O(n?) diametral sets of Lemma 7, with lines perpendicular to ¢, since the
new points on the cutting lines cannot cause an increase of diam.(G). If we shorten one of the shortest
paths connecting two diametral points, their distance decreases, and so each of the O(n?) diametral
set only needs to be intersected once. We can prove that all the sets can be intersected using k£ + 1
lines. The idea is to project each diametral set onto the line ¢ so that each set determines an interval
on the line. Then, for each interval, we define a line that intersects it, and also crosses all the intervals
overlapping with that one. This produces a sequence of subsets of diametral sets Dy D D1y D Ds.. .,
where Dy is the set of all diametral sets of G, satisfying that the diametral sets in D;_2\D;_1 do not
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intersect those in D;_1\D;. Hence, we can find at most k + 1 of the lines defined above, otherwise we
would have k + 1 disjoint diametral sets. O

We note that the previous bound can be attained, at least for
k = 1. Consider, for example, the wheel graph on 33 vertices,
Ws3, embedded in the plane such that its outer boundary is a
regular 32-sided polygon, and the distance from the wheel center
to each polygon vertex is one. This implies that each side has
length s = 2sin(7/32) ~ 0.19. Any two vertices of the polygon
are connected by a path of length two, through the wheel center.
This path is shorter than going along the boundary as soon as the
other vertex is more than ten vertices away along the boundary
(since 11s > 2). It follows that the diametral pairs of this graph
are given by pairs of midpoints of polygon sides that are at distance
24 s~ 2.19. In fact, each midpoint has nine points at exactly that
distance, corresponding to the midpoint exactly opposite, plus those of the first four sides neighboring
the opposite side, in each direction. See side figure for the nine diametral pairs involving p.

Next we argue that subdividing by one line is not enough to decrease the diameter of W33. Any line
intersecting the wheel will leave at least 15 complete triangles of the wheel on one side. These triangles
are contiguous, and form a fan. The diameter of any such a fan with 13 or more triangles remains
the same as the original one, 2 + s. It follows that two lines are necessary. Moreover, they are also
sufficient, since two parallel lines at a very small distance that enclose the center will result in three
subgraphs with smaller diameter. Therefore, b.(Ws3) = 3 = k + 2.

5 Borsuk number of trees

In this section, we first compute by(7") for an arbitrary tree 7', and then we move to the continuous
version of the problem, which behaves differently.

Proposition 9. The discrete Borsuk number of any tree T with n vertices can be computed in O(n)
time. Furthermore,

(i) If the center of T is not a unique vertex, then by(T) = 2.

(ii) If the center of T is a vertex v, then by(T) = by(T") = o1/ (v), where T is the subtree of T induced
by the vertices of all diametral paths, and é1/(v) is the degree of v in T".

While b4(T") depends on the center of T', we next show that the continuous Borsuk number is upper-
bounded by a constant. We apply the following lemma that states that lines intersecting a tree at its
center cannot cause an increase of the diameter of the tree.

Lemma 10. Let T be the locus of a tree with center point C, and let £ be a line that passes through C.
Then, max{diam.(({T NT)Us),diam.(({~ NT)Us)} < diam.(T), where s is the longest segment in ¢
that has its endpoints in T U L.

Lemma 10 also holds for lines that intersect the tree, not at the center, but infinitely close to it.
Further, with lines that go exactly through the center C, we cannot guarantee that the diameters
obtained after cutting are strictly smaller than diam.(7") (for example, the star graph with three edges
of the same length and not contained in the same half-plane through the center). However, Proposition
11 below states that when a tree has Borsuk number 2, we can always find a line intersecting 7 at
a point infinitely close to the center giving a correct partition (that is, the diameter decreases with
respect to the original). This is an important step in order to design an algorithm for deciding whether
the continuous Borsuk number of a tree is 2 or 3 which, by Theorem 12, are its possible values.
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Proposition 11. Let T be the locus of a tree with center point C. If b.(T) = 2 then there exists a
sequence of lines {{;}i>o satisfying that:

(1) {dr(ti,C)}i>0 approaches zero, where t; is the closest point in T N¥; to C.

(ii) there exists j > 0 such that for every i > j, max{diam.((¢; NT) U s;),diam.((¢; NT)Us;)} <
diam.(7T), where s; is the longest segment in ¢; that has its endpoints in T U ¢;.

Theorem 12. Let T be the locus of a tree. Then, b.(T) < 3.

Proof. (Brief sketch.) Consider a line ¢ that passes through the center point C of 7, and splits the tree
into two graphs 71 and 73. We can assume that ¢ does not contain any edge incident or containing C
as an interior point. By Lemma 10, the diameters of 71 and 7s are at most diam.(7). A case analysis
of how distances change after inserting the line, lets us conclude that dr, (p,C) < diam.(7)/2 for every
point p on T; (analogous for 7). This fact is the key tool to prove that the diameters of 77 and 75 are
strictly smaller than diam.(7) when C is not a vertex of 7', which leads to b.(7) = 2.

If C is a vertex of T, a diametral pair of 77 or T2 may consists of two leaves at distance diam.(7).
Then, we may need two lines to decrease the diameter; for example, this is the case in the star graph
with all edges of the same length and such that no half-plane through the center contains all of them. It
suffices to take two parallel lines to ¢, one slightly above and the other below. This gives b.(7) < 3. O

6 Conclusions

We have introduced the concept of Borsuk number of a graph in a discrete and a continuous setting.
Let us mention that this is ongoing research. In the continuous setting, we are currently focusing on
proving the NP-hardness of computing b.(G), and whether there is a polynomial time algorithm to
decide whether b.(G) = 2. In addition, we are trying to answer the question of whether b.(G) can be
upper-bounded by a constant, and designing an algorithm for trees as mentioned above. We are also
delving deeper into the discrete version, currently studying the Borsuk number of unicycle graphs to
better understand the behavior of this parameter.
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Abstract

The canonical van der Waerden theorem states that, for large enough n, any colouring of [n]
gives rise to monochromatic or rainbow k-APs. In this work, we are interested in sparse random
versions of this result. More concretely, we determine the threshold at which the binomial random
set [n], inherits the canonical van der Waerden properties of [n].

1 Introduction

Arithmetic Ramsey theory is a branch of combinatorics that studies what sort of arithmetic structure
must appear in all possible — although frequently restricted to finite — colourings of the integers. One
of the first and most celebrated results in the field is van der Waerden’s theorem [23], which states
that any finite colouring of the integers contains monochromatic arithmetic progressions of arbitrary
length.

There are several paths to generalizing van der Waerden’s theorem, which also provide a better
understanding of the underlying phenomenon responsible for the appearance of such arithmetic struc-
ture. A first option consists in studying when can one guarantee the existence of other objects besides
arithmetic progressions. An example of such a generalization is the work of Rado [15], who studied
the case of general linear structures. In fact, he was able to characterize precisely those homogeneous
linear systems of equations that admit monochromatic solutions in any finite colouring of the integers
(for more details see, for example, [9]).

A second possibility for generalizing van der Waerden’s theorem consists in dropping the restriction on
the number of colours, and studying what kind of structure one may still find for all possible colourings,
using a finite numbers of colours or not. It turns out that, in the case of arithmetic progressions, the
needed piece of structure to complete the puzzle is that of rainbow progressions, namely, arithmetic
progressions where every element has a different colour. This gives rise to the canonical van der
Waerden theorem, first proved by Erdés and Graham [6], where an arithmetic progression which is
monochromatic or rainbow is called canonical.

Theorem 1 (Canonical van der Waerden). For any integer k > 1, there exists large enough n such
that the following holds. Any colouring of [n] = {1,...,n} contains a canonical arithmetic progression

of length k.
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Note that Theorem 1 clearly implies that any colouring of the integers (possibly with an infinite
numbers of colours) contains arbitrarily long canonical arithmetic progressions. A well-known com-
pactness argument, with a nice additional idea, can be applied to prove that this “infinite” version in
fact does imply the “finite” version in the theorem above (see, e.g., [7, p. 29]).

A final path to generalizing van der Waerden’s theorem is changing the ambient set where the theorem
holds. Instead of colouring the integers, one might consider looking for monochromatic arithmetic
progressions in colourings of some particular subset of the integers. For example, a common way to
do this is proving an analogue of the theorem in random sets (see, for example, [19]). The theorem
also holds when the ambient set is substituted by a set that is pseudorandom enough, meaning, in
very informal terms, that it has statistical properties similar to those of a random set (see [5] and the
references therein for an in-depth discussion).

In fact, the focus of this work will be a sparse random version of Theorem 1. Consider the random
set [n],, where every element of [n] is sampled independently with probability p. We study how large
must p be for [n], to satisfy an analogue of the canonical van der Waerden theorem. More formally, a
threshold for a monotone property P is a function p* = p*(n) such that

lim P([n|, € P) =

n—o0

0if p < cp*
1if p > Cp*

for constants C,c > 0. The case of the statement that guarantees [n|, ¢ P with high probability is
referred to as the 0-statement and the other one as the 1-statement.

For example, Rodl and Rucinski [18,19] established such a threshold for the van der Waerden property
(and, more generally, a Rado type theorem). To state it precisely, let us say a set is (r, k)-van der
Waerden if any r-colouring contains a monochromatic arithmetic progression of length k. Their result,
for the case of arithmetic progressions, reads as follows.

Theorem 2 (Sparse van der Waerden). Given integers k > 3 and r > 2, there exist constants C,c > 0
such that:

o Forp>Cn %=1 the random set [n]p is a.a.s. (r,k)-van der Waerden.
o Forp < cen V=V the random set [n], is a.a.s. not (r,k)-van der Waerden.

See also [8] for further discussion of Theorem 2, where sharpness of the threshold is proved.

The main contribution of this work consists in proving the same kind of statement for the canonical
van der Waerden theorem. Indeed, let us say a set is canonically k-van der Waerden if every colouring
contains a canonical arithmetic progression of length k. We prove the following.

Theorem 3 (Sparse canonical van der Waerden). Given a natural number k > 3, there exist constants
C,c > 0 such that:

~1/(k=1)

e Forp>Cn , the random set [n]y is a.a.s. canonically k-van der Waerden.

o Forp < cn™ Y=Y the random set [n]p is a.a.s. not canonically k-van der Waerden.

Note that the O-statement follows from the corresponding O-statement in Theorem 2 with r = 2,
since a rainbow arithmetic progression of length k£ cannot be formed with only two colours.

Results such as this one, where a known theorem over discrete ambient sets is translated to sparser
settings, and particularly to sparse random subsets, have become a common theme in modern combina-
torics in the last decades. In the case of Ramsey’s theorem, this was first carried out in a seminal series
of papers by R6dl and Rucinski [16-18], and both the O-statement and the 1-statement had delicate and
involved proofs. The 1-statement was later reproved with a short and elegant argument by Nenadov
and Steger [14], using the method of hypergraph containers [3]. The ideas of Nenadov and Steger
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have also been used in arithmetic Ramsey theory, for example, to give short proofs of the 1-statement
in sparse random versions of Rado’s theorem (see [10] or [22]). Our proof uses the ideas of [14] and
the method of hypergraph containers, although a straightforward application of their methods is not
possible because their argument relies on the boundedness of the number of colours.

Sparse random versions of canonical Ramsey theorems are much more recent. In these, one must
somehow overcome the difficulty of having a possibly unbounded number of colours in a given colouring.
In a breakthrough result, Kamcev and Schacht [11] have proven a sparse analogue of the canonical
Ramsey theorem for cliques, using the transference principle of Conlon and Gowers [4]. In independent
work, a subset of the authors [1] prove a canonical Ramsey theorem when the colourings are constrained
by some prefixed lists of colours. This is then one of of the ingredients to establish a canonical Ramsey
theorem for even cycles [2]. These results use a combination of ideas from the method of containers
and the work of Rodl and Rucinski [19].

The current work is inspired in the previous work of [1,2] and [11], and aims to prove an analogous
result in the arithmetic setting. It turns out that, when looking for arithmetic progressions, the situation
for canonical theorems is different from theirs, since we only look for monochromatic or rainbow copies
of arithmetic progressions, whereas when dealing with graphs, one might also find lexicographic copies
of graphs (see [1] or [11] for more details). In the course of proving our result, we use a new set of ideas
which allow for a streamlined proof in the arithmetic setting.

2 Sketch of the proof

In this section we give a rough sketch of the proof of Theorem 3 and some of the ideas involved in it.
As we noted before, we concentrate only on the proof of the 1-statement.

The proof of the 1-statement starts out with a basic dichotomy over a given colouring of [n],. If such
a colouring has a colour with positive density, we are able to apply the sparse version of Szemerédi’s
theorem (see Theorem 5 below) to find a monochromatic arithmetic progression of length k or k-AP
for short). If, on the other hand, all colours are sparse, it turns out that we may find a rainbow k-AP.
In order to split according to this criterion, we introduce bounded colourings.

Definition 4. An r-colouring x: A — [r] of a set A C N is a-bounded for o > 0 if |[x~1(i)| < alA| for
all i € [r], that is, all colours have density at most « in A.
2.1 The dense colour case

We say a set A is (4, k)-Szemerédi if every subset of A of size greater than §|A| contains a k-AP. The
sparse random version of Szemerédi’s theorem, proven by Conlon and Gowers [4] and Schacht [21]
independently, establishes the threshold where [n], satisfies this condition.

Theorem 5 (Szemerédi’s theorem for sparse random sets). Given § > 0 and a natural number k > 3,
there exists a constant C' such that, for p > Cn~Y* =1 the random set [n]p is a.a.s. (6, k)-Szemerédi.

For our purposes, this can be rephrased in terms of bounded colourings.

Corollary 6. Given a > 0 and a natural number k > 3, there exists C' = C(a, k) such that the set [n],
a.a.s. satisfies the following property for p > Cn~Y* =1 " Every colouring of [n], that is not a-bounded
contains a monochromatic k-AP.

2.2 Searching for rainbows

On account of the previous observation, it suffices to establish the following to prove Theorem 3.

Proposition 7. Given k > 0, there exist C = C(k) and o = a(k) such that the set [n], a.a.s. satisfies
the following property for p > Cn=Y/ =Y Bvery a-bounded colouring of [n]p contains a rainbow k-AP.
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Once picking a suitable constant «, successively merging the smallest colours, we may reduce the
proof of Proposition 7 to the case of a-bounded colourings with at most = [2/«/] colours. This leaves
us in a better position, since now the number of colours is bounded in terms of o and we may use
container type arguments.

2.2.1 A container theorem

In very loose terms, the hypergraph container theorem [3,20] is a way to cluster independent sets of
a sufficiently regular hypergraph. This allows one to control the probability of lying in one of these
clusters when a simple union bound over all possible independent sets would be too large. Still in
somewhat vague terms, it gives, for every sufficiently regular hypergraph H, a collection of containers
C C P(V(H)) that satisfy the following properties:

e The containers are almost independent. They contain few edges of H, usually in the sense that
e(H[C]) < ee(H) for £ > 0 as small as needed and every C € C.

e Every independent set in H is contained in one of the containers.

e There are few containers. More precisely, every independent set has a small subset (its fingerprint)
that is uniquely associated to a container. The number of containers may be bounded by the
total amount of small subsets.

In order to prove Proposition 7 we just look for rainbow k-APs, so we apply the container theorem to
the rainbow copy hypergraph H = H(n, k,r) with vertex set consisting of r copies of [n], one for every
possible colour, and edge set formed by all possible rainbow k-APs. More formally, H is the k-uniform
hypergraph with vertex set V(#H) = [n] x [r], and edge set

E(H) = {{(nl,cl), oy (e cr)) € (V(k”H)) . (n1,...,ny) forms a k-AP and ¢; # ¢; Vi # j} .

It is useful to identify subsets of V(#) with the following notion of an [r]-coloured set.

Definition 8. An [r]|-colouring of a set A C [n] is a function x: A — P([r]). Such a pair (A, x) forms
an [r]-coloured set. A subcolouring (A’,x") of (A, x) is a colouring such that A" C A and x'(i) C x(7)
forallie A'.

Indeed, an [r]-coloured subset (A, x) with A C [n] can also be thought of as a subset of [n]x[r] = V(H)
in a natural way, and we write A, C V(H) for such a set. An application of the hypergraph container
theorem then gives the following (for a very similar application of the container method, see [12,13]).

Theorem 9. For any k € N and ¢ > 0, there exists a constant C = C(k,e) > 0, a collection A of
[r]-coloured sets, and a function f: P([n])" — A satisfying:

o Every A, € A satisfies e(H[Ay]) < en?, that is, there are less than en® rainbow k-APs compatible
with the [r]-coloured set A, .

e For every [r]-coloured set I, with no rainbow k-AP, there exists a subcolouring Sy, C I, such that
S| < Cn' =YD and I, C f(Sy).

2.2.2 A supersaturation result

In order to use Theorem 9, we must study what we can deduce about our containers from the fact
that they admit few rainbow k-APs. In most applications of the hypergraph container theorem this
is stated as a supersaturation result, which gives conditions that guarantee the existence of many
solutions. Here, we state it in the contrapositive form, which turns out to be slightly more comfortable
for this application. We obtain the following.
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Proposition 10. Given k, there exists M = M(k) such that the following holds. For every r, there
is an ¢ = e(k,r) > 0 such that any [r]-coloured subset (x, A) satisfying |A| > n/2 and e(H[A,]) < en?
admits a subset of colours L C [r] with |[L| < M and a subset B C A with

|B| >n/8 and x(B)CL, (1)

that is, one can find a large number of values in A which only use colours in L, and the size of L is
bounded independently of the number of colours r.

We remark that the crucial part of Proposition 10 is that the bound M on |L| does not depend on
the total number of colours r, but only on k. The proof of this result starts out by noticing that the

set
C={zeA:|x(z)] = k}

is small, say |C| < n/4. Otherwise, by a supersaturated version of Szemerédi’s theorem, we find many
k-APs in C, and, since every element of C' has at least k different colours to choose from, every k-AP
in C gives rise to at least one rainbow k-AP.

Let A’ = A\ C. By somewhat more delicate counting arguments, one can prove that, for most values
of z € A’, the list x(z) is made up uniquely of colours that appear at least in Sn other values of A’
for some 8 = (k) > 0. These colours make up our list L, and the bound on its size follows from the
fact that there are at most |A’|k pairs of value and colour, so that
A"k K

<.
pn — B

L] <

2.2.3 Putting it together

Proposition 10 implies, for £ small enough, that each container obtained in Theorem 9 is either small
(JA] < n/2), or there exists B C A satisfying (1). From Theorem 9 it follows that, if the set [n], can
be coloured with an a-bounded colouring with no rainbow k-AP, then [n], C A for some A, € A.
If |JA] < n/2, it is exponentially unlikely that [n], C A, so we focus on the latter case. In fact, we
expect [n], to have size close to np and intersect the corresponding B in about |B|p > np/8 positions.
Assuming such estimates would leave us in a very good position, since any colouring of [n], compatible
with B would have a colour of density at least

[Blp _ 1
npM — 8M’

which, setting o < 1/8M, would contradict the a-boundedness of the colouring. Thus, the conclusion
of Proposition 7 fails only when [n], or its intersection with B have large deviations from their ex-
pected value. Using Chernoff bounds to obtain exponential concentration and some standard estimates
involving a union bound over all possible containers gives Proposition 7.
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Abstract

We introduce a new exact algorithm for Multi-objective Linear Integer problems based on the
classical e-constraint method and algebraic test sets computed with Grobner bases. Our method
takes advantage of test sets 1) to identify which IPs have to be solved in an e-constraint framework
and 2) using reduction with test-sets instead of solving with an optimizer. We show that the
computational results are promising in some families of examples.

1 Introduction

Problems in the real world involve multiple objectives. Due to conflict among these objectives, finding
a feasible solution that simultaneously optimizes all objectives is often impossible. As decision makers
usually need a complete knowledge of the best decisions they can take from those different points of
view, generating the set of efficient solutions (i.e., solutions for which it is impossible to improve the
value of one objective without worsening the value of at least one other objective) is a primary goal in
multi-objective optimization. Multi-objective Integer Programming (MOIP) is the branch that deals
with this kind of problem in the case of integer variables, and the linear case (MOILP) is the one in
which we will concentrate.

Generation methods compute the whole space of Pareto optimal solutions. Among these type of
methods, we have the weighted sum of objectives approach and the e-constraint technique, that generates
a grid in the objective space with ranges between the costs of ideal and nadir points. In e-constraint
methods, for each point in the upper bound set (cf. [9, 5]) a single-objective problem is solved, avoiding
incremental movements through the grid.

In [14, 10, 15, 19, 13] different approaches to apply this e-constrained setting in MOLIP can be
found. Two additional algebraic approaches to MOIP have been presented: the one proposed in [3],
that introduces the so called partial Grébner bases, and [4] that generalized for several cost functions
the ideas presented in [1] for single-objective problems. Unfortunately these two algebraic proposals
can not manage big examples, to the best of our knowledge.

Our approach is based on the so-called test sets associated to single-objective Linear Integer Pro-
gramming problems (LIP), taking advantage of their special characteristics. A test set is a set of
directions that guides the movement from any feasible point until the optimum of the LIP is reached.
So LIPs are solved by reduction with these test sets, instead of passing them to an optimizer. It is
proved in [18] that Grébner bases provide the minimal test set for a fixed total ordering compatible
with the linear cost function of the considered program. These test sets do not depend on the right
hand sides (RHS) of the constraints. Interested readers can consult the references [17, 2].
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We will show how our method takes advantage of the features of test sets to manage the e-constraint
setting efficiently: most of the typical redundant computations are circumvented and we only provide
new efficient solutions. Although the computation of Grébner bases can be a hard task, very sensitive
to the number of variables (cf. [16]) in our experiments the algorithm is fairly competitive in the
unbounded knapsack problem.

This paper is a generalization of a previous work of the authors ([12]) for the biobjective case.

2 Preliminaries

A multi-objective linear integer optimization problem (MOLIP) in standard form can be stated as

min  ¢;(x),...,cp(x) (1)
st. Ax=Db, x€ZY,
for A € Z™*", rank(A) =m, b € Z™ and ¢y, . .., ¢, with p > 2 linear functions with integer coefficients.

In general there is no feasible point that minimizes all the cost functions, so we are interested in
obtaining the efficient points, that is those feasible points x* such that there is no feasible x with ¢ (x) <
cx(x*) with at least one strict inequality for k = 1,...,p. If x* is an efficient point, (c1(x*), ..., cp(x*))
is a non-dominated (or Pareto) point in the decision space. If we replace the condition cg(x) < cp(x*)
for cx(x) < cp(x*) we obtain weakly efficient points. We will denote X the set of efficient points and
N the set of non-dominated points, the Pareto frontier.

We will assume that the feasible region for problem (1) is finite, so the Pareto frontier A is finite as
well. In this paper we present an algorithm to obtain a set X* C X that is a minimal complete set of
efficient points (that is, if x%,x° € X* then (c1(x%),...,cp(x%)) # (c1(xY),...,cp(x?)) and |X*| = |N],
as in [8])

The e-constraint technique, (see [11]), one of the best known techniques to address problem (1),
manages many problems of the form

min  cx(x)

st. Ax=Db )
C](X) <€j’ J _]-7"‘7p (]#k)
X € L3
for fixed k = 1,...,p and suitable values of ¢; in order to solve Problem (1). Optimal points of

Problem 2 are always weakly efficient. Furthermore we can identify the efficient solutions, as the
following theorem of [8] states:

Theorem 1. A feasible solution x* of a linear MOIP is efficient if and only if there exists a (e1, ..., €p) €
RP such that x* is an optimal solution of the corresponding problems (2) for k=1,...,p.

Thus we have families of IPs for which only the right hand side (RHS) varies, so it is natural to
consider at this point one algebraic tool called the test set of a given LIP. Given the family of LIPs in
standard form (no inequalities)

min  ¢(x)
st. Ax=Db (3)
X € 13,

for A € Zm*", rank(A) =m, b € Z™ and c a linear function with coefficients in Z", in general there
is not only one optimal point but several ones with the same cost. We can refine the cost function
considering a total order <. that first compares two points by the cost ¢ and breaks ties according to
a chosen term order < (see [6]). If we consider problem (3) replacing the cost function by <., it does
not affect the optimal value but, as it is a total order, it insures a unique optimum.
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Definition 2. A test set with respect to <. of the family of problems (3) for fized A is a set T C {t €
Z" : At = 0} walid for any RHS, with the following properties:

1. For any feasible, non-optimal solution x of (3) for some b, there exists t € T such that x — t is
feasible and x — t <. x.

2. Given the optimal solution x* of (3) for some b, we have that x* —t is not feasible for anyt € T.

There exists a test set for any given LIP that can be computed with Grobner bases with respect to <.
([18]). The existence of test sets for an LIP implies a straightforward algorithm to find its optimum: we
start from any feasible point and subtract elements of the testset as long as we obtain feasible points.
We will refer to this process as reduction of a feasible point with the test set.

So given the family of problems (2) for a fixed k, using test sets to solve them requires only 1) the
computation of one test set for all the problems and 2) the reduction of a feasible point of each problem
with the test set. It is very important to underline that, if the test set is available, the reduction process
is very often faster than passing the IP to an optimizer. In addition, we will see that test sets guide us
during the task of choosing which values of ¢; produce new efficient solutions, avoiding many redundant
LIPs to be solved. At last, in contrast with several methods that compute first weakly efficient solutions
and filter them in a second step, we will see that using a suitable total order we obtain efficient points
directly.

3 Characterization of efficient points using test sets

To solve the problem (1) we will adopt a recursive scheme. We will obtain a minimal set of efficient
solution of the problems

min  ¢1(x),...,c(x)
st. Ax=b, x€Z,

(4)

for « = 2,...,p and for this purpose we will use the e-constraint method and manage the problems
Pi(e1,...,€i—1) (in standard form)

min ¢ (x)

st. Ax=Db

c1(x) + 11 = €,

ci—1(x) + 1 = €1,
n
X € sz

fori=1,...,pand (e1,...,€6_1) € R7L.

For a given 7,2 < ¢ < p, let us note <, the total order that first compares two feasible points with
respect to ¢; and to break ties uses successively c1,...,¢i—1,¢it1,...,¢p and finally a chosen term order
< if it were necessary. We will denote 7, C 7+@=1 the test-set for problem (5) with respect to the
total order <, (the elements of this test set have ¢ —1 additional variables because of the slack variables
added to the problem to put it in standard form).

The following result provides a characterization of the efficient points in this context.

Theorem 3. A feasible point (x*,0) € Z"*P~1) s the optimal solution of Py(c1(x*),...,cp1(x*))
with respect to the total order <¢, if and only if x* is an efficient solution of (4) and among the ones
with costs (c1(x*),...,cp—1(x*)) is the smallest one with respect to <,

Corollary 4. If (x*,t) € Z"*®=D con t > 0 is the optimal solution of P,(€) for some € € Z+e=1)
with respect to <, then X* is an efficient solution of (1).
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Theorem 3 provides in particular a way to obtain the first point of our set of representatives of the
non-dominated set of points of problem (1), the one with minimum ¢;:

Corollary 5. [8, Lemma 5.2.] Let x} be the optimal solution of
min{c; (x) : Ax = b,x € Z%}

with respect to the ordering <z . Then X7 is an efficient solution of (1) with minimum cost c;.

4 Recursive construction of a minimal set of efficient solutions

Given the set of efficient solutions X, let us denote X* C X the minimal complete set of efficient points
whose elements have the property of being the smallest ones with respect to <z, among the points that
have the same costs. So by definition there is one efficient solution corresponding to each element in
the Pareto frontier M. The next result show how the elements X* can be obtained:

Theorem 6. Let x € X*. Then one of the following statements is true:
1. d(x*) = (e1(x*),...,cp—1(x*)) belongs to the Pareto frontier of problem (4) fori=p—1

2. There exists a solution X' of Py(€') for some ¢ € R P~V sych that ¢;(x') < ¢;(x*) for 1 <i <
p—1 with at least an strict inequality and there exists (t,r) € T, such thatt < x* andr > 0,r # 0
(componentwise) and r = ¢ (x*) — ¢ (X).

The theorem above assures, by induction, that the elements of X* come from solving problem (4) for
some i = 1,...,p—1 (that is, belong to the solution of the problem taking into account only the first 4
cost functions) or from reducing elements of the form (x*,r) for some x* efficient solution of problem
(4) for some ¢ = 1,...,p — 1 and some r that produce an element (x*,r) that is reducible and whose
reduction with respect to 7,. Its reduction produces a new element in X*.

Theorem 7. Let x* be an efficient solution of

min  ¢1(x),...,c¢(x) (6)
st. Ax=b x€ Z%,

with respect to <¢, for some 1,1 < i <p—1 then x* is efficient for

min ¢ (x),...,ci(x), cit1(x) (M)
st. Ax=b x€eZi,

with respect to <

—Ciq1-
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Algorithm 1 Algorithm to obtain a minimal set of efficient solutions of a MOILP with p objetives
(p>2)
Require: vector of cost functions (c1,c¢2,...,¢p), A and b of problem (1)
Compute 77
e < the solution of min{ci(x) s.t. Ax =b,x € Z%,} with respect to <,
X' {el} a
P+ {el}
fori=2,...,pdo
Compute 7;
for all x € P do
P:=P\ {x}
Compute Gy
if Gy # () then
Giumps + {(x,1) such that there exists (t,r) € Gx}
for all (x,r) € Gjumps do
(y,t) < optimal solution of Pi(ey,...,€;—1) with respect to <; and initial feasible solution
(x,r).
if y ¢ X’ then
X+ X' U{y}
P+ PU{y}
end if
end for
end if
end for
end for
OUPUT: A minimal set of efficient solutions with respect to <z,

Algorithm 1 takes into account our previous results and produce a minimal set of efficient points for
a given problem (1). For a given x and a given test-set 7; we will denote Gx = {(t,r) € T : t <x,r >
0,t # 0} and Gx the subset of elements (t,r) of Gx with their last ¢ — 1 components non comparable.

5 Conclusions

We have introduced a new exact algorithm to obtain a minimal set of efficient points for MOLIPs. It
is based on the classical e-constraint method and test sets for a family of IPs computed via Grobner
bases with respect to an order that, properly chosen, guides us in the process of obtaining only efficient
solutions and avoiding most of unnecessary computations.

Computational experiments are promising for unbounded knapsack problems (that could be hard
to treat with the usual techniques of the binary case). We have have been able to solve problems
up to 100 variables for 3 objectives and 75 variables for 4 and 5 objectives (as far as we know the
biggest examples proposed in the literature). We have treated too some examples of multi-objective
redundancy allocation problems (as in [7]) with excellent results.
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Rainbow connectivity of multilayered random geometric graphs
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Abstract

An edge-colored multigraph G is rainbow connected if every pair of vertices is joined by at least
one rainbow path, i.e., a path where no two edges are of the same color. In the context of multilayered
networks, we introduce the notion of multilayered random geometric graphs, from A > 2 independent
random geometric graphs G(n,r) on the unit square. We define an edge-coloring by coloring the
edges according to the copy of G(n,r) they belong to and study the rainbow connectivity of the

. . h . .
resulting edge-colored multigraph. We show that r(n) = (nli’f”l ) 1z , is a threshold of the radius for
the property of being rainbow connected. This complements the known analogous results for the

multilayered graphs defined on the Erdés—Rényi random model.

1 Introduction

Complex networks are used to simulate large-scale real-world systems, which may consist of various
interconnected sub-networks or topologies. For instance, this could involve different transportation
systems and coordinating schedules between them, modeling interactions across different topologies of
the network. Barrat et al. [1] proposed a new network model to represent the emerging large network
systems, which include coexisting interacting different topologies. Those network models are known as
layered complex networks, multipler networks or as multilayered networks. In a multilayered network,
each type of interaction of the agents gets its own layer, like a social network having a different layer
for each relationship, such as friendship or professional connections [6]. Recently, there’s been a lot
of interest in adapting tools used in the analysis for single-layer networks to the study of multilayered
ones, both in deterministic and random models [2]. In the present work, we explore thresholds for the
rainbow connectivity of the multilayered random geometric graphs.

A random geometric graph (RGG), G(n,r), where r = r(n) on the unit square I = [0,1)? is defined
as follows: Given n vertices and a radii 7(n) € [0,+/2], n vertices are sprinkled independently and
uniformly at random (u.a.r.) in the unit square I = [0,1]2. Two vertices are adjacent if and only if
their Euclidean distance is less than or equal to r(n).

Random geometric graphs provide a natural framework for the design and analysis of wireless net-
works. For further information on random geometric graphs, one may refer to Penrose [10] or to the
more recent survey by Walters [12]. Random geometric graphs exhibit a sharp threshold behavior with
respect to connectivity [7]: As the value of r increases, there is a critical threshold value r. such that
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when r < r., the graph is typically disconnected, while for r > r., the graph is typically connected. The

Inn

. Notice r. is also a threshold for the disappearance

threshold for connectivity of G(n,r) is r. ~
of isolated vertices in G(n,r).

For any random geometric graph, G(n,r), the expected degree [Ng(n . (v)] is w.h.p.! nor?, Vo €
V(G). Equivalently the expected degree is concentrated around its mean. Regarding the diameter,
diam(G), of a random geometric graph G(n,r), Diaz et al. [5] showed that if r = Q(r.) then diam(G) =
(1+ 0(1))¥2.

We now introduce a general definition for the random model of edge colored multigraphs obtained
by the superposition of a collection of random geometric graphs on the same set of vertices. Formally,
a multilayered geometric graph G(n,r, h,b) is defined by three parameters, n the number of nodes, r
the radii of connectivity, and h the number of layers, together with a position assignment b : [n] —
[0,1)% x -+ x [0,1]%>. For i € [n], we denote b(i) = (b%,...,b}), where b € [0,1]2. The multigraph

h
G(n,r, h,b) has vertex set [n] and an edge (4,7) with color k, 1 < k < h, if the Euclidean distance
between bfC and b‘,i is at most r. Note that, for k € [h], r and the positions (bi;)n, a geometric graph
Gr(n,r) is defined by the edges with color k. Thus, G(n,r, h,b) can be seen as the colored union of h
geometric graphs, all with the same vertex set and radius. Observe that G(n,r, h,b) is defined on I%".
We refer to Gi(n,r) as the k-th layer of G(n,r, h,b).

A multilayered random geometric graph G(n,r, h) is obtained when the position assignment b of the
vertices is selected independently, for each vertex and layer, uniformly at random in [0, 1]2. Thus, the
k-th layer is an RGG. This definition is given for dimension two and it can be extended to points in a
multidimensional space by redefining the scope of the position function.

Given an edge—colored graph G, we say G is rainbow connected if, between any pair of vertices
u,v € V(Q), there is a path with edges of pairwise distinct colors. Chartrand et al [4] introduced the
study of the rainbow connectivity of graphs as a strong property to secure strong connectivity in graphs
and networks. Since then, variants of rainbow connectivity have been applied to different deterministic
models of graphs, see for ex. the survey of Li et al. [8] for further details on the extension of rainbow
connectivity to other graph models.

The study of rainbow connectivity has been addressed in the context of multilayered binomial random
graphs by Bradshaw and Mohar [3]. The authors give sharp concentration results on three values on
the number A of layers needed to ensure rainbow connectivity of the resulting multilayered binomial
random graph G(n,p) with appropriate values of p. The results have been extended by Shang [11] to
ensure rainbow connectivity k£ in the same model, namely, the existence of k internally disjoint rainbow
paths joining every pair of vertices in the multilayered graph.

In this paper, we are interested in studying the rainbow connectivity of a multilayered random
geometric graph G(n,r, h). In particular, for every fixed h, we are interested in the minimum value of
r (as a function of n) such that w.h.p. the multilayered random geometric graph G(n,r, h) is rainbow
connected. Dually, for fixed values of » we want to determine the minimum number of layers h such
that G(n,r, h) is rainbow connected. The latter parameter can be defined as the rainbow connectivity
of the multilayered random geometric graph.

Main results: Our main results are lower and upper bounds of the value of r, to asymptotically
assure that w.h.p. G(n,r, h), do have or do not have the property of being rainbow connected.

Theorem 1. Let h > 2 be an integer and let G = G(n, h,r) be an h-layered random geometric graph.

Then, if
= ()

w.h.p. means with high probability, i.e. with probability tending to 1 as n — oco.

1
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then w.h.p. G is rainbow connected.
Moreover, there is a constant 0 < ¢ < 1 such that, if

then w.h.p. G is not rainbow connected.

Notice that Theorem 1 can be re-stated as a threshold of h for the rainbow connectivity of multilay-
ered geometric random graph G.

Corollary 2. Let r = r(n) with r(n) = o(1). Set

e log n + loglogn
0= log nr? ’

The multilayered random geometric graph G(n,r,h) is w.h.p. rainbow connected if h < hg, while if

h > hg it is w.h.p. not rainbow connected.

2 Rainbow Connectivity of Two-layered Random Geometric Graphs

The proof of Theorem 1 requires a special argument for the case h = 2. We give below the proof of
this case which also illustrates the techniques for general h > 2.

Proposition 3. Let G(n,r,2) be a two-layered random geometric graph. If

Inn\ 4
rn) > | — ,
then G is w.h.p. rainbow connected.
Moreover, there is a positive constant ¢ > 0 such that, if

Inn\ /4
< i
rm<e(B0)

then w.h.p. G is not rainbow connected.

Proof. Denote by Gi(n,r) and Ga(n,r) the two layers of G, with the value of r = r(n) given in the
statement of the proposition. For each pair v;,v; € V, let Xy, ,; denote the indicator random variable

~J 1 if there is not a rainbow path between v; and v; in G,
v 0 otherwise.

Let vy, be different from v; and v;. Let A,, be the event that vy is joined to v; in Gi(n,r) and to v;
in Ga(n,r) or vice versa, namely,

Ay, = {{vi € Bi(vg)} N {v; € Ba(vg)}} U {{vj € Bi(vr)} N{vi € Ba(vy)}},

where B;(v) denotes the set of neighbours of v in G;, i = 1,2. By taking into account the boundary
effects on the unit square, we have Pr(v; € B(v;)) = mr? + o(r?). We have,

(mr? 4 o(r?))? < Pr(A,,) < 2(mr? 4 o(r?))?.
Let Ay, denote the event that v; and v; are joined by an edge either in Gy(n,r) or in Ga(n,r), that is

Ay, w; = {vi € Bi(vj)} U {vi € Ba(v))},
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so that
Pr(Ay, v,) = 2112 + o(r?).

For given v; and vj, the event that they are joined by a rainbow path in G is (Ui ;Ay,) U Ay, ;-
Therefore, since A,, and Ay, ., are independent, for every sufficient large n we have

E(Xvi,vj) = Pr((uk#iJAvk) U (Aviﬂfj)) - Pr((ﬂk;«éi,jAvk) N (Aviy'Uj)
< (1= (mr®)2 +o(r?)" 2. (1 — 2012 + o(r?))
< (1= (7r®)2 + o(r?))".
Let X be a random variable counting the number of pairs {v;,v;} that are not joined by a rainbow
path in G. Then X = ZK]- Xy, v; and, by plugging in the inequality for r(n),

n n
E(X) = ZE(XWW]') S (2) (1 — (7'(7=2)2 —+ 0(7'2))
i<j
< e2logn <1 . 7T210gn +o <logn>>n < e(2—7r2)logn+o(logn)
n n

By Markov’s inequality, it follows that Pr(X > 1) < E(X) — 0, as n — oo. It follows that w.h.p.
G is rainbow connected, which proves the first part of the statement.

For the second part, let 7(n) < ¢(logn/n)'/* for some positive small constant ¢ to be specified later.
By using the upper bounds on the probabilities of the events A,, and Ay, .,,

1 n—1
B(Xy0,) > (1= 2(m2 + 0(r?))2)" (1 — 212 + o(r?)) > (1 - 2c47r2n”> .
n

1 1 n—2
E(Xy0;) > (1= 2% +0(r2))2)" 2 > (1 YLl ( gn»
n n

Let X,, = > ki X wj denote the number of vertices v; not joined with v; by a rainbow path in G. We

have, with ¢ = 2¢*7?,

n—2
E(Xv) > (n — 2) 1— C,M To logn ~ e(lfc’)lnn _ nlfc’.
v n—1 n

By choosing ¢ < (2/72)Y/* we have ¢ < 1, so that E(X;) — oo with n — co. Since X,, is a sum

of independent random variables, by Chernoff inequality we have Pr(X,, = 0) < e~ /2 for each
1> > . It follows that G is w.h.p. not rainbow connected. O

3 Proof of Theorem 1

The proof of Theorem 1, for h > 2, is sketched below.
A key property of multilayered random geometric graphs is their local expanding properties.

Lemma 4. Let h > 2 be fized and let G = G(n,r, h) be a multilayered random geometric graph. Let
u € V(G) a fized vertex and denote by Nj(u) the set of vertices reached from u by rainbow paths of
length j§ starting at u, the i—th edge along the path colored i. Let M = nr?. Then, for 1 < j < h—1
we have that w.h.p.

IN; ()] = ©(M).
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The proof of Lemma 4 uses the fact that the probability that the size of the image of a random map
g : [m] — [k] deviates from m more than a constant a > 0 is at most 2exp(—2(a — m?/2k)?/m). This
fact in turn follows by a direct application of the McDiarmid concentration inequalities [9].

Lemma 4 provides the existence of rainbow paths from a given vertex to all vertices in the graph.

Proposition 5. Let h > 2 be fized and let G = G(n,h,r) be an h—multilayered random geometric

graph. Let uw € V(G). If
np \ /2
T <nh1) )

then w.h.p. there is a rainbow path from u to every other vertex in G.

Proof. Let us consider first the case that h > 3 is odd, i.e., h = 2k + 1, for some k£ > 1. Denote by
Gi = Gi(n,r) the i-thlayer of G. For I C [h], we denote by Gr(n,r) the layered graph formed by the
layers included in I. For a pair 4, j of distinct vertices in V(G) and a permutation o of {1,2,3,...,h},
let P(i,j;0) denote the set of rainbow paths of length h joining 7 and j with the first edge in Gy
and the last one in G,(;). For a permutation o, let I1(0) = {o(1),...,0(k)}

Let A = Nj (i) be the set of vertices reached from i by rainbow paths of length k starting at j
following the color order determined by o. Let B = Nj ,(j) be the set of vertices reached from j by
rainbow paths of length k starting at j following the color order determined by following ¢ in reversed
order with the k-th edge along the path colored k+2. From Lemma 4, |A|,|B| = ©((nr?)*) = ©(n*r?¥)

Let X; ; denote the number of rainbow paths of length £ joining i and j with the first edge in G, (1),
the second edge in G4 (2) and so on. For a pair (k,k') € Ax B with k # k', let Yy ;s be the indicator
function that k and k" are neighbours in G,(41). We have E(Yj ) = 712, the probability that the
vertices k' and k are adjacent in Go(k41)- Then,

Xij = Z Yi s
k k!

where the sum runs through all pairs (k, k") € A x B with k # k. We observe that the variables Yy s/
are independent. When the pairs (k, k'), ({,1") are disjoint it is clear that Y} ;/,Y;, are independent.
When k = [, say, then Pr(Y;r = 1,Y; = 1) is the probability that & and I’ are both adjacent to k,
which is the product Pr(Yj i = 1) Pr(Yyr = 1).

Let us fix r(n) > (;2?1)1/%. Note that Nj_1(u) < n, so each (h — 1)-layered subgrah of G is not
w.h.p. rainbow connected. Then it follows that w.h.p. the sets A and B, for ¢ # j not connected by
a rainbow path of length h — 1 are disjoint. In this case, the events Y}, ;- are independent, therefore

Pr(X;; = 0) = Pr(Npp{Yiw = 0}) = [[ Pr(Yiw = 0)
kK’
nkr2k)2 < —7rn2k’r‘4k+2
(& .

=(1- 7r7“2)(

By using the union bound on all pairs 7, 7 and the lower bound on r,

2k7.4k+2

PI’(ﬂ@j{Xij > 1}) =1- Pl“(Ui’in’j = 0) >1- n2e™ ,
As k= (h —1)/2, by the lower bound on r,
n2kr4k+2 — nh_lT'Qh > (10g n)’

Therefore, the last term in the bound on Pr(N; ;{X;; > 1}) is o(1) as n — oco. Hence w.h.p. all pairs
i, 7 are connected by a rainbow path of length h.
For even h, the result is obtained by an extension of the argument used for h = 2 in Proposition 3. [J

For the lower bound on r(n), an application of the second moment method as the one given in
Proposition 3 for the case h = 2 can be extended to h > 2.
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4 Conclusions

The main purpose of this paper is to identify the threshold for the radius to get a rainbow-connected
multilayered random geometric graph, as obtained in Theorem 1. As mentioned in the Introduction,
the analogous problem of determining the threshold for h so that the multilayered binomial random
graph is rainbow connected was addressed by Bradshaw and Mohar [3].

We believe that the model of multilayered random geometric graphs is very appealing and leads to a
host of interesting problems. One may think of a dynamic setting where n individuals perform random
walks within the cube and communicate with the close neighbors at discrete times t1 < t3 < --- < tp,.
The rainbow connectivity in this setting measures the number of instants needed so that every individual
can communicate with each of the other ones. A natural immediate extension is to address the threshold
to get rainbow connectivity k, as achieved in the case of multilayered binomial random graphs by
Shang [11].

There is a vast literature addressing rainbow problems in random graph models, and this paper is
meant to open the path to these problems in the context of multilayered random geometric graphs.
It would also be interesting to find asymptotic estimates on r such that h copies produce a rainbow
clique of size V.

We observe that, for large h, the threshold of r for rainbow connectivity approaches the connectivity
threshold of random geometric graphs. The arguments in the proof, however, apply only for constant
h. For h growing with n, the correlation between distinct edges in our model decreases and the model
gets closer to the random binomial graph, where the results are expected to behave differently and the
geometric aspects of the model become irrelevant.
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Polytope neural networks*

Juan L. Valerdif

1 Introduction

A major challenge in the theory of neural networks is to precisely characterize the functions they can
represent [2]. This topic differs from universal approximation theorems [1], which aim to guarantee
the existence of neural networks that approximate functions well. Although it is well known that
feedforward neural networks with ReLU activation are continuous piecewise linear (CPWL) functions
[2, 3], the minimum number of layers required to represent any CPWL function remains an open
question.

A potential way to solve this problem is through the concept of depth of a polytope given by neural
networks.

Definition 1. The collection of polytope neural networks with depth m is defined as
P
A(m) = { Z conv{P;, Q;} | Pi,Qi € A(m — 1)}’
i=1

where the sum corresponds to Minkowski sum and conv{P;, Q;} means the convex hull of P; UQ;. The
base set A(0) represents the polytopes consisting of a single point.

Definition 2. A polytope P is said to have (minimal) depth m, denoted as d(P) = m, if P € A(m)
and P ¢ A(m —1).

Neural networks are traditionally named after their building object or operation. For example, ReLLU
neural networks use ReLU activation, and convolutional neural networks [3] are based on convolution
kernels. In a similar manner, the naming of polytope neural networks is derived from their underlying
object.

The connection between ReLLU and polytope neural networks can be found through tropical geometry
[10]. Any ReLU network can be decomposed into the difference of two convex CPWL functions,
which can be mapped to polytopes via Newton polytopes. In particular, understanding the functions
representable by ReLLU neural networks of a given depth is equivalent to studying which polytopes can
be constructed at that depth, as defined in Definition 1.

The open question for ReLU networks reduces to whether the function max{zy,zs,...,z,,0} can
be represented with minimal depth [logy(n + 1)]. This question can be rephrased in the language of
polytopes as follows.

Conjecture 3 (Hertrich et al. [6]). Let S be an n-simplex, then d(S + P) = [logs(n + 1)], for any
polytope P with d(P) < [logy(n + 1)].

*The full version of this work can be found in [8] and will be published elsewhere.
TEmail: j.valerdill@gmail.com
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Our understanding of the sets A(m), beyond the case of m = 1, which corresponds to the set of
zonotopes, remains limited. The conjecture is known to be true for n = 2 and n = 3 [2, 7|. However,
to this date, the only contribution addressing Conjecture 3 for any n has been made by Haase et al.
[5], who have proven it for lattice polytopes. Their approach involved relating depth with subdivision
and volume properties of Minkowski sums and convex hulls.

The goal of this work is to advance our knowledge of polytope neural networks relevant to Conjec-
ture 3. We show basic depth properties from Minkowski sums, convex hulls, number of vertices, faces,
affine transformations, and indecomposable polytopes. More significantly, key findings include depth
characterization of polygons; identification of polytopes with an increasing number of vertices, exhibit-
ing small depth and others with arbitrary large depth; and most importantly, depth computation for
simplices.

Acknowledgements. I extend my gratitude to Ansgar Freyer for providing the proof of Theorem
12 for n = 4, which was expanded to the general case with minor adjustments. I also thank Francisco
Santos for his hospitality during my visits to the University of Cantabria, and for valuable discussions
on this work, including presentation enhancements and the ideation and proof of Theorem 14.

2 Basic properties

To develop the main results in Section 3, it is necessary to establish some basic depth properties for
polytopes. We assume R" as the ambient space throughout.

We begin by computing depth bounds for Minkowski sums and convex hulls, which are the funda-
mental operations in Definition 1.

Proposition 4. Let Py, P> be polytopes with d(P;) < m;. Then, d(Py + P;) < max{mi,ma} and
d(conv{ Py, Py}) < max{mi,ma} + 1.

Proof. 1f d(P;) < mj;, then P; € A(max{m1, ma}). This implies conv{P;, P»} € A(max{m,ma} + 1)
by definition, and therefore d(conv{Py, P»}) < max{mj, ma} + 1.
Also by definition, consider the decomposition

qi
P, = ZCOHV{Qj,ia Rji},
7j=1

where Q;;, Rj; € A(max{my,mgo} —1) for all i = 1,2 and j = 1,...,¢;. Consequently, d(P; + P») <
max{mj, ma} as

Q a2
P+ P = Z conv{Qj1,Rj1} + Z conv{Qj2, Rj2} € A(max{mi,ma}). O
j=1 j=1
Now, using Proposition 4 we can bound the depth of a polytope by its vertices.
Proposition 5. If a polytope P is given by its vertices P = conv{x1, ..., zp}, then d(P) < [logy p].

Proof. By definition, d({z1}) = 0 and d(conv{z1,z2}) = 1. Supposing the statement is true up to
p — 1, consider a polytope P = conv{zi,...,z,} and decompose it as

P = conv{conv{xy,...,xx}, conv{zry1,...,2p}},

where k is the largest integer power of 2 such that & < p. Using the induction hypothesis, we obtain
that d(conv{z1,...,zx}) <logy k and d(conv{zjy1,...,xp}) < [logy(p—Fk)]. Therefore, by Proposition
4, we conclude d(P) < logy k + 1 = [log, p]. O

Other basic properties concerns the depth of a polytope in relation to its faces and affine transfor-
mations.
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Proposition 6. Any face F # () of a polytope P satisfies d(F) < d(P).

Proof. For d(P) = 0, there is nothing to prove. If d(P) = 1, then P is a zonotope, and any face F is
also a zonotope; therefore, d(F') < 1. For the sake of induction, suppose the statement is true up to
depth m — 1 and consider d(P) = m. By definition,

q
P= Zconv{Pi,Qi}, P;,Q; € A(m—1).

i=1
A face I of P is then expressed as
q
F= Zconv{Fi, Gi}.
i=1
where F;, G; are faces of P, Q; respectively. By the induction hypothesis, d(F;) < m — 1 and d(G;) <
m — 1, and consequently F;, G; € A(m — 1) for all i. Therefore, F' € A(m) and d(F) < d(P). O

Proposition 7. Let P be a polytope in R™ and ¢ : R — A be an affine transformation, where A is
an affine subspace of RY. Then, d(p(P)) < d(P), with equality holding if ¢ is invertible.

Proof. Let ¢(x) = Mx + ¢, where M € R¥™ and ¢ € R?. For the case d(P) = 0 consider P = {a},
then ¢(P) = {Ma + ¢}, which implies d(¢(P)) = 0. For the purpose of induction, assume that the
statement, in the general case, is true up to m — 1. Let d(P) = m and express it as

p
P = ZCOHV{Pi,Qi}, P,Q; € A(m — 1).
i=1

Then,

p(P) = gp(ZconV{B, Q1}> = MZconV{Pi, Qit+c= Zconv{MPi, MQ;} + {c}.
i=1

i=1 i=1

Utilizing the induction hypothesis and Proposition 4, we deduce that d(p(P)) < m. In the case of ¢
being invertible, we get
d(P) = d(¢™" (2(P))) < d((P)) < d(P). O

A class of polytopes in which computing their depth may be easier is that of indecomposable poly-
topes. Two polytopes, P and @), are said to be positively homothetic, if P = AQ + w for some A\ > 0
and w € R™. A polytope P is said to be indecomposable if any decomposition P = Zle P; is only
possible when P; is positively homothetic to P for all : =1,... k.

Proposition 8. If P is an indecomposable polytope, then there exist polytopes Py, Py such that P =
conv{ P1, Po} and d(P) = max{d(P1),d(P)} + 1.

Proof. By definition, there exist P;, Q; € A(d(P)—1),i =1,...,k, such that

k
P = Z COHV{Piv Qz}a
i=1

where an index j necessarily satisfies max{d(P;),d(Q;)} + 1 = d(P). As P is indecomposable, there
exist A; > 0 and w; € R™ such that P = \jconv{P;,Q;} + w; = conv{\; P; + w;, \;Q; + w;}, and by
Proposition 7,

d(P) = max{d(P;),d(Q;)} + 1 = max{d(\; P; + w;),d(N\;Q; + w;}) + 1. O
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3 Main results
We first present a full depth characterization for polygons.
Theorem 9. Any polygon P satisfies d(P) < 2.

Proof. Let P be a polygon. If P is a zonotope, then d(P) = 1; whereas, if P is a triangle, then d(P) = 2
due to Proposition 5 and the fact that P is not a zonotope. Suppose that P is neither a zonotope nor

a triangle; then, it can be decomposed as P = Zle P;, where P; is a zonotope or a triangle for all
i=1,...,k [4]. Therefore, d(P) < 2 by Proposition 4. O

From Theorem 9, we deduce that a polygon can have depth 0 if it consists of a single point, depth
1 if it is a zonotope, or depth 2 otherwise.

We continue with zonotopes and (bi)pyramids, as example of polytopes which can have large number
of vertices and small depth.

Proposition 10. Any n-(bi)pyramid, n > 3, with a zonotope base has depth 2.

Proof. A 3-(bi)pyramid P includes triangular facets, therefore it is not a zonotope, and thus d(P) > 2.
Assuming that up to n — 1, (bi)pyramids has depth greater than or equal to 2, let’s consider a facet F
of an n-(bi)pyramid P containing an/the apex. Since F' is a pyramid of dimension n— 1, then d(F') > 2
based on the induction hypothesis. Consequently, d(P) > d(F') > 2 by Proposition 6.

Now, consider P an arbitrary n-(bi)pyramid with a zonotope base Z and apex (or apices) A. Then,
2 < d(P) = d(conv{Z,conv A}) < 2 according to Proposition 4. O

Theorem 11. Let v, = 22?:_01 (pzl) for p > n. For each p satisfying this condition, there exist
polytopes with v, vertices and depth 1, and also with v, + 1 vertices and depth 2.

Proof. Let g; = [0,b;], where i = 1,...,p, represent line segments with by, ..., b, denoting points in R"
in general position. The zonotope Z = Y% _| g; has depth 1 and has v, vertices given the generators are
in general position [9]. Lifting Z to R"*! by adding 0 to the new coordinate allows the construction of
a pyramid P with Z as its base. Therefore, d(P) = 2 by Proposition 10. O]

In Theorem 11, we constructed two families of polytopes, zonotopes and pyramids, which exhibit an
increasing number of vertices and possess depths of 1 and 2, respectively. This indicates that depth
bounds from Proposition 5 may be far from the true depth of a polytope. However, this bound based
on vertices cannot be further refined, as it is tight for simplices.

We next present two approaches for calculating the depth of simplices. The first approach leverages
the face structure and indecomposability of simplices, while the second approach results from a more
general finding regarding polytopes containing complete subgraphs.

Theorem 12. Any n-simplex has minimal depth [logy(n + 1)].

Proof. We know that 2-simplices have depth 2. Let’s make the assumption that, for K =3,...,n — 1,
k-simplices have depth [logy(k + 1)] and consider an n-simplex P. Given that P is indecomposable
[4], we can employ Proposition 8 to get a pair of polytopes Pp, P» such that P = conv{P;, P} and
max{d(Py),d(P)} =d(P) — 1.

Without loss of generality, one of the P;, let’s say P;, contains at least ¢ = (”THW points that are
vertices of P. Consider F' = conv{zy,...,z.}, where z;,7 = 1,..., ¢ are vertices of P contained in P;.
Then, F' is a (¢ — 1)-simplex and a face of P. Let H be a supporting hyperplane of P associated with
F'. From

F=HNFCHNPLCHNP=F,
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we deduce that F' is also a face of P;. By the induction hypothesis,

d(F) = {logQ [n—;— 1H = [logy(n+1)] —1

Referring to Proposition 5, Proposition 6, and Proposition 8, we derive that
[logo(n+1)] — 1 < d(P;) <max{d(P1),d(P)} =d(P)—1< [logg(n+1)] — 1,
thus concluding that d(P) = [logy(n + 1)]. O

For the second approach we will compute the depth of 2-neighbourly polytopes, for which we need
the following result.

Lemma 13. If the graph of a polytope G(P) contains a complete subgraph with p > 3 vertices, and P
can be decomposed as P = Zle P;, then at least one of G(P;) also contains a complete subgraph with
p vertices.

Proof. Consider that u,v,w are vertices of P in the complete subgraph of G(P) with p > 3 vertices.
Given that any vertex of P can be uniquely represented as the sum of vertices of P;,e = 1,...,k, let
u;, vi, w; be those vertices for P; that represent u, v, w respectively. Therefore, we can express the edges
[u, v], [u, w], [v,w] as

k k k

[uvv] = Z[uiavi]’ [u’w] = Z[Ui,wiL [an] = Z[vivwi]‘

i=1 =1 i=1

The edges [u;, v;], [u;, wil, [v;, w;] are parallel to [u, v], [u, w], [v, w] respectively, and because wu, v, w form
a triangle in G(P), it follows that their ratios of edge lengths satisfies

This implies there exists an index j for which these ratios are nonzero, implying that vertices u;, v;, w;
form a triangle in G(P;). Extending this reasoning to any other vertex z in the complete subgraph, by
applying the same logic with vertices u, v, z, it is deduced that u;,v;, z; also form a triangle in G(P;),
and this pattern continues with other vertices. ]

Theorem 14. If the graph of a polytope G(P) contains a complete subgraph with p > 3 vertices, then
d(P) = [log, p].

Proof. Suppose a subgraph of G(P) is complete and contains p = 3 or p = 4 vertices. If we assume
d(P) =1, then P = Zle P;, where each P; is a segment. This contradicts Lemma 13, which implies
that at least one P; must include p vertices. Therefore, we conclude d(P) > 2.

For the sake of induction, let’s assume that the result holds for all cases up to p — 1. Now, consider
that G(P) includes a complete subgraph consisting of p vertices. By definition, we can express P as

k
P = Zconv{Pi, Q:}, where d(P;),d(Q;) <d(P)—1.
i=1

According to Lemma 13, there exists an index j for which G(conv{P;,Q;}) also contains a complete
subgraph K with p vertices. Without loss of generality, we can assume that P; contains at least [5]
vertices of K, and consequently the complete subgraph induced by those vertices. Using the induction
hypothesis we obtain

p
A(P) =12 d(P;) = [log, [1]| = [1og2p] ~ 1.
from which it follows d(P) > [logs p]. O
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Corollary 15. Any 2-neighbourly polytope P with p vertices satisfies d(P) = [logg p].

Proof. 1t is a direct consequence of Theorem 14 and Proposition 5. O

Corollary 16. Any n-simplex has depth [logs(n + 1)].

Another important consequence of Theorem 14 is that allows to find a family of polytopes with the
same dimension and increasingly large depth.

Corollary 17. For every p > n > 4 the cyclic n-polytope with p vertices has depth [logy(p + 1)].

4 Concluding remarks

Knowing that n-simplices has depth [logy(n + 1)] reveals one part of Conjecture 3, and together with
Proposition 4, we have obtained an upper depth bound for the conjecture. However, a tight lower
bound is still needed to prove it.

In ReLU neural networks, from which Conjecture 3 originated, it has been proven that, for CPWL
functions f and g, if their depth satisfy d(f) < d(g), then d(f + g) = d(g) [8]. If this result also holds
true in polytope neural networks, it could solve the conjecture. However, the existing proof for CPWL
functions is inapplicable to polytopes, as it requires the inverse for the sum operation.

Another interesting contrast between polytope and ReLLU networks is found in Corollary 17, where
cyclic n-polytopes, for n > 4, have arbitrary large depth. Instead, for a fixed domain R", all CPWL
functions can be computed by ReLU neural networks with a depth of [logy(n + 1)]. For polytopes,
this contrast is also seen with Theorem 9, where polygons are shown to have a maximum depth of 2.
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Abstract

We follow works of Whitney, Farrell, and Morgan and Delbourgo, to express the coefficients
of the chromatic polynomial P(G;\) of a graph G in the variable A in terms of the number of
(induced) subgraphs of G: the coefficient of A¢I=? is given as a polynomial on variables (a;g) with
integer coefficients, and where the z; are the number of induced copies of a 2—connected graphs
with < p + 1 vertices that are not formed by gluing two 2—connected graphs through a common
clique. Our main contribution is that the finding of these expressions can be systematised, and that
they do not depend on the 2—connected graphs with < p 4 1 vertices that are formed by gluing two
2—connected graphs through a common clique. As an application, we give an alternative proof of
the chromatic uniqueness of the wheels with an odd number of vertices.

1 Introduction

The chromatic polynomial of a graph G, P(G;\), gives, as its evaluations on the positive integers n,
the number of proper colourings of a graph using n colours. In particular, the chromatic polynomial
has 0,1,...,x(G) — 1 as roots. In general, it can be defined as the polynomial that is A on a graph
on a single vertex, 0 if the g